vits-simple-api-gsv / bert_vits2 /text /english_bert_mock.py
Artrajz's picture
init
960cd20
raw
history blame
1.48 kB
import torch
from contants import config
def get_bert_feature(text, word2ph, tokenizer, model, device=config.system.device, style_text=None, style_weight=0.7,
**kwargs):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].float().cpu()
if style_text:
style_inputs = tokenizer(style_text, return_tensors="pt")
for i in style_inputs:
style_inputs[i] = style_inputs[i].to(device)
style_res = model(**style_inputs, output_hidden_states=True)
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].float().cpu()
style_res_mean = style_res.mean(0)
assert len(word2ph) == res.shape[0], (text, res.shape[0], len(word2ph))
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
if style_text:
repeat_feature = (
res[i].repeat(word2phone[i], 1) * (1 - style_weight)
+ style_res_mean.repeat(word2phone[i], 1) * style_weight
)
else:
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T