Spaces:
Runtime error
Runtime error
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Credits | |
This code is modified from https://github.com/GitYCC/g2pW | |
""" | |
import json | |
import os | |
from typing import Any | |
from typing import Dict | |
from typing import List | |
from typing import Tuple | |
import numpy as np | |
import onnxruntime | |
from opencc import OpenCC | |
from transformers import BertTokenizer | |
from pypinyin import pinyin | |
from pypinyin import Style | |
from .dataset import get_char_phoneme_labels | |
from .dataset import get_phoneme_labels | |
from .dataset import prepare_onnx_input | |
from .utils import load_config | |
from .char_convert import tranditional_to_simplified | |
model_version = "1.1" | |
def predict( | |
session, onnx_input: Dict[str, Any], labels: List[str] | |
) -> Tuple[List[str], List[float]]: | |
all_preds = [] | |
all_confidences = [] | |
probs = session.run( | |
[], | |
{ | |
"input_ids": onnx_input["input_ids"], | |
"token_type_ids": onnx_input["token_type_ids"], | |
"attention_mask": onnx_input["attention_masks"], | |
"phoneme_mask": onnx_input["phoneme_masks"], | |
"char_ids": onnx_input["char_ids"], | |
"position_ids": onnx_input["position_ids"], | |
}, | |
)[0] | |
preds = np.argmax(probs, axis=1).tolist() | |
max_probs = [] | |
for index, arr in zip(preds, probs.tolist()): | |
max_probs.append(arr[index]) | |
all_preds += [labels[pred] for pred in preds] | |
all_confidences += max_probs | |
return all_preds, all_confidences | |
class G2PWOnnxConverter: | |
def __init__( | |
self, | |
model_dir: None, | |
model_source=None, | |
style: str = "bopomofo", | |
enable_non_tradional_chinese: bool = False, | |
): | |
sess_options = onnxruntime.SessionOptions() | |
sess_options.graph_optimization_level = ( | |
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
) | |
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL | |
sess_options.intra_op_num_threads = os.cpu_count() - 1 | |
try: | |
self.session_g2pw = onnxruntime.InferenceSession( | |
os.path.join(model_dir, "g2pW.onnx"), | |
sess_options=sess_options, | |
providers=["CUDAExecutionProvider"], | |
) | |
except: | |
self.session_g2pw = onnxruntime.InferenceSession( | |
os.path.join(model_dir, "g2pW.onnx"), sess_options=sess_options | |
) | |
self.config = load_config( | |
os.path.join(model_dir, "config.py"), use_default=True | |
) | |
self.model_source = ( | |
os.path.join(os.path.abspath(os.curdir), model_source) | |
if model_source | |
else os.path.join(os.path.abspath(os.curdir), self.config.model_source) | |
) | |
self.enable_opencc = enable_non_tradional_chinese | |
self.tokenizer = ( | |
BertTokenizer.from_pretrained(self.model_source) | |
if model_source | |
else BertTokenizer.from_pretrained(self.config.model_source) | |
) | |
polyphonic_chars_path = os.path.join(model_dir, "POLYPHONIC_CHARS.txt") | |
monophonic_chars_path = os.path.join(model_dir, "MONOPHONIC_CHARS.txt") | |
self.polyphonic_chars = [ | |
line.split("\t") | |
for line in open(polyphonic_chars_path, encoding="utf-8") | |
.read() | |
.strip() | |
.split("\n") | |
] | |
self.non_polyphonic = { | |
"一", | |
"不", | |
"和", | |
"咋", | |
"嗲", | |
"剖", | |
"差", | |
"攢", | |
"倒", | |
"難", | |
"奔", | |
"勁", | |
"拗", | |
"肖", | |
"瘙", | |
"誒", | |
"泊", | |
"听", | |
"噢", | |
} | |
self.non_monophonic = {"似", "攢"} | |
self.monophonic_chars = [ | |
line.split("\t") | |
for line in open(monophonic_chars_path, encoding="utf-8") | |
.read() | |
.strip() | |
.split("\n") | |
] | |
self.labels, self.char2phonemes = ( | |
get_char_phoneme_labels(polyphonic_chars=self.polyphonic_chars) | |
if self.config.use_char_phoneme | |
else get_phoneme_labels(polyphonic_chars=self.polyphonic_chars) | |
) | |
self.chars = sorted(list(self.char2phonemes.keys())) | |
self.polyphonic_chars_new = set(self.chars) | |
for char in self.non_polyphonic: | |
if char in self.polyphonic_chars_new: | |
self.polyphonic_chars_new.remove(char) | |
self.monophonic_chars_dict = { | |
char: phoneme for char, phoneme in self.monophonic_chars | |
} | |
for char in self.non_monophonic: | |
if char in self.monophonic_chars_dict: | |
self.monophonic_chars_dict.pop(char) | |
self.pos_tags = ["UNK", "A", "C", "D", "I", "N", "P", "T", "V", "DE", "SHI"] | |
with open( | |
os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), | |
"bopomofo_to_pinyin_wo_tune_dict.json", | |
), | |
"r", | |
encoding="utf-8", | |
) as fr: | |
self.bopomofo_convert_dict = json.load(fr) | |
self.style_convert_func = { | |
"bopomofo": lambda x: x, | |
"pinyin": self._convert_bopomofo_to_pinyin, | |
}[style] | |
with open( | |
os.path.join( | |
os.path.dirname(os.path.abspath(__file__)), "char_bopomofo_dict.json" | |
), | |
"r", | |
encoding="utf-8", | |
) as fr: | |
self.char_bopomofo_dict = json.load(fr) | |
if self.enable_opencc: | |
self.cc = OpenCC("s2tw") | |
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str: | |
tone = bopomofo[-1] | |
assert tone in "12345" | |
component = self.bopomofo_convert_dict.get(bopomofo[:-1]) | |
if component: | |
return component + tone | |
else: | |
print(f'Warning: "{bopomofo}" cannot convert to pinyin') | |
return None | |
def __call__(self, sentences: List[str]) -> List[List[str]]: | |
if isinstance(sentences, str): | |
sentences = [sentences] | |
if self.enable_opencc: | |
translated_sentences = [] | |
for sent in sentences: | |
translated_sent = self.cc.convert(sent) | |
assert len(translated_sent) == len(sent) | |
translated_sentences.append(translated_sent) | |
sentences = translated_sentences | |
texts, query_ids, sent_ids, partial_results = self._prepare_data( | |
sentences=sentences | |
) | |
if len(texts) == 0: | |
# sentences no polyphonic words | |
return partial_results | |
onnx_input = prepare_onnx_input( | |
tokenizer=self.tokenizer, | |
labels=self.labels, | |
char2phonemes=self.char2phonemes, | |
chars=self.chars, | |
texts=texts, | |
query_ids=query_ids, | |
use_mask=self.config.use_mask, | |
window_size=None, | |
) | |
preds, confidences = predict( | |
session=self.session_g2pw, onnx_input=onnx_input, labels=self.labels | |
) | |
if self.config.use_char_phoneme: | |
preds = [pred.split(" ")[1] for pred in preds] | |
results = partial_results | |
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds): | |
results[sent_id][query_id] = self.style_convert_func(pred) | |
return results | |
def _prepare_data( | |
self, sentences: List[str] | |
) -> Tuple[List[str], List[int], List[int], List[List[str]]]: | |
texts, query_ids, sent_ids, partial_results = [], [], [], [] | |
for sent_id, sent in enumerate(sentences): | |
# pypinyin works well for Simplified Chinese than Traditional Chinese | |
sent_s = tranditional_to_simplified(sent) | |
pypinyin_result = pinyin( | |
sent_s, neutral_tone_with_five=True, style=Style.TONE3 | |
) | |
partial_result = [None] * len(sent) | |
for i, char in enumerate(sent): | |
if char in self.polyphonic_chars_new: | |
texts.append(sent) | |
query_ids.append(i) | |
sent_ids.append(sent_id) | |
elif char in self.monophonic_chars_dict: | |
partial_result[i] = self.style_convert_func( | |
self.monophonic_chars_dict[char] | |
) | |
elif char in self.char_bopomofo_dict: | |
partial_result[i] = pypinyin_result[i][0] | |
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0]) | |
else: | |
partial_result[i] = pypinyin_result[i][0] | |
partial_results.append(partial_result) | |
return texts, query_ids, sent_ids, partial_results | |