Artrajz's picture
init
1c9751a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Credits
This code is modified from https://github.com/GitYCC/g2pW
"""
import json
import os
from typing import Any
from typing import Dict
from typing import List
from typing import Tuple
import numpy as np
import onnxruntime
from opencc import OpenCC
from transformers import BertTokenizer
from pypinyin import pinyin
from pypinyin import Style
from .dataset import get_char_phoneme_labels
from .dataset import get_phoneme_labels
from .dataset import prepare_onnx_input
from .utils import load_config
from .char_convert import tranditional_to_simplified
model_version = "1.1"
def predict(
session, onnx_input: Dict[str, Any], labels: List[str]
) -> Tuple[List[str], List[float]]:
all_preds = []
all_confidences = []
probs = session.run(
[],
{
"input_ids": onnx_input["input_ids"],
"token_type_ids": onnx_input["token_type_ids"],
"attention_mask": onnx_input["attention_masks"],
"phoneme_mask": onnx_input["phoneme_masks"],
"char_ids": onnx_input["char_ids"],
"position_ids": onnx_input["position_ids"],
},
)[0]
preds = np.argmax(probs, axis=1).tolist()
max_probs = []
for index, arr in zip(preds, probs.tolist()):
max_probs.append(arr[index])
all_preds += [labels[pred] for pred in preds]
all_confidences += max_probs
return all_preds, all_confidences
class G2PWOnnxConverter:
def __init__(
self,
model_dir: None,
model_source=None,
style: str = "bopomofo",
enable_non_tradional_chinese: bool = False,
):
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
sess_options.intra_op_num_threads = os.cpu_count() - 1
try:
self.session_g2pw = onnxruntime.InferenceSession(
os.path.join(model_dir, "g2pW.onnx"),
sess_options=sess_options,
providers=["CUDAExecutionProvider"],
)
except:
self.session_g2pw = onnxruntime.InferenceSession(
os.path.join(model_dir, "g2pW.onnx"), sess_options=sess_options
)
self.config = load_config(
os.path.join(model_dir, "config.py"), use_default=True
)
self.model_source = (
os.path.join(os.path.abspath(os.curdir), model_source)
if model_source
else os.path.join(os.path.abspath(os.curdir), self.config.model_source)
)
self.enable_opencc = enable_non_tradional_chinese
self.tokenizer = (
BertTokenizer.from_pretrained(self.model_source)
if model_source
else BertTokenizer.from_pretrained(self.config.model_source)
)
polyphonic_chars_path = os.path.join(model_dir, "POLYPHONIC_CHARS.txt")
monophonic_chars_path = os.path.join(model_dir, "MONOPHONIC_CHARS.txt")
self.polyphonic_chars = [
line.split("\t")
for line in open(polyphonic_chars_path, encoding="utf-8")
.read()
.strip()
.split("\n")
]
self.non_polyphonic = {
"一",
"不",
"和",
"咋",
"嗲",
"剖",
"差",
"攢",
"倒",
"難",
"奔",
"勁",
"拗",
"肖",
"瘙",
"誒",
"泊",
"听",
"噢",
}
self.non_monophonic = {"似", "攢"}
self.monophonic_chars = [
line.split("\t")
for line in open(monophonic_chars_path, encoding="utf-8")
.read()
.strip()
.split("\n")
]
self.labels, self.char2phonemes = (
get_char_phoneme_labels(polyphonic_chars=self.polyphonic_chars)
if self.config.use_char_phoneme
else get_phoneme_labels(polyphonic_chars=self.polyphonic_chars)
)
self.chars = sorted(list(self.char2phonemes.keys()))
self.polyphonic_chars_new = set(self.chars)
for char in self.non_polyphonic:
if char in self.polyphonic_chars_new:
self.polyphonic_chars_new.remove(char)
self.monophonic_chars_dict = {
char: phoneme for char, phoneme in self.monophonic_chars
}
for char in self.non_monophonic:
if char in self.monophonic_chars_dict:
self.monophonic_chars_dict.pop(char)
self.pos_tags = ["UNK", "A", "C", "D", "I", "N", "P", "T", "V", "DE", "SHI"]
with open(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"bopomofo_to_pinyin_wo_tune_dict.json",
),
"r",
encoding="utf-8",
) as fr:
self.bopomofo_convert_dict = json.load(fr)
self.style_convert_func = {
"bopomofo": lambda x: x,
"pinyin": self._convert_bopomofo_to_pinyin,
}[style]
with open(
os.path.join(
os.path.dirname(os.path.abspath(__file__)), "char_bopomofo_dict.json"
),
"r",
encoding="utf-8",
) as fr:
self.char_bopomofo_dict = json.load(fr)
if self.enable_opencc:
self.cc = OpenCC("s2tw")
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str:
tone = bopomofo[-1]
assert tone in "12345"
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
if component:
return component + tone
else:
print(f'Warning: "{bopomofo}" cannot convert to pinyin')
return None
def __call__(self, sentences: List[str]) -> List[List[str]]:
if isinstance(sentences, str):
sentences = [sentences]
if self.enable_opencc:
translated_sentences = []
for sent in sentences:
translated_sent = self.cc.convert(sent)
assert len(translated_sent) == len(sent)
translated_sentences.append(translated_sent)
sentences = translated_sentences
texts, query_ids, sent_ids, partial_results = self._prepare_data(
sentences=sentences
)
if len(texts) == 0:
# sentences no polyphonic words
return partial_results
onnx_input = prepare_onnx_input(
tokenizer=self.tokenizer,
labels=self.labels,
char2phonemes=self.char2phonemes,
chars=self.chars,
texts=texts,
query_ids=query_ids,
use_mask=self.config.use_mask,
window_size=None,
)
preds, confidences = predict(
session=self.session_g2pw, onnx_input=onnx_input, labels=self.labels
)
if self.config.use_char_phoneme:
preds = [pred.split(" ")[1] for pred in preds]
results = partial_results
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
results[sent_id][query_id] = self.style_convert_func(pred)
return results
def _prepare_data(
self, sentences: List[str]
) -> Tuple[List[str], List[int], List[int], List[List[str]]]:
texts, query_ids, sent_ids, partial_results = [], [], [], []
for sent_id, sent in enumerate(sentences):
# pypinyin works well for Simplified Chinese than Traditional Chinese
sent_s = tranditional_to_simplified(sent)
pypinyin_result = pinyin(
sent_s, neutral_tone_with_five=True, style=Style.TONE3
)
partial_result = [None] * len(sent)
for i, char in enumerate(sent):
if char in self.polyphonic_chars_new:
texts.append(sent)
query_ids.append(i)
sent_ids.append(sent_id)
elif char in self.monophonic_chars_dict:
partial_result[i] = self.style_convert_func(
self.monophonic_chars_dict[char]
)
elif char in self.char_bopomofo_dict:
partial_result[i] = pypinyin_result[i][0]
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
else:
partial_result[i] = pypinyin_result[i][0]
partial_results.append(partial_result)
return texts, query_ids, sent_ids, partial_results