ArthurY's picture
update source
c3d0544
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Literal, Optional
import numpy as np
import nvtx
import torch
from physicsnemo.models.diffusion import EDMPrecond
from physicsnemo.utils.patching import GridPatching2D
# ruff: noqa: E731
# NOTE: use two wrappers for apply, to avoid recompilation when input shape changes
@torch.compile()
def _apply_wrapper_Cin_channels(patching, input, additional_input=None):
"""
Apply the patching operation to the input tensor with :math:`C_{in}` channels.
"""
return patching.apply(input=input, additional_input=additional_input)
@torch.compile()
def _apply_wrapper_Cout_channels_no_grad(patching, input, additional_input=None):
"""
Apply the patching operation to an input tensor with :math:`C_{out}`
channels that does not require gradients.
"""
return patching.apply(input=input, additional_input=additional_input)
@torch.compile()
def _apply_wrapper_Cout_channels_grad(patching, input, additional_input=None):
"""
Apply the patching operation to an input tensor with :math:`C_{out}`
channels that requires gradients.
"""
return patching.apply(input=input, additional_input=additional_input)
@torch.compile()
def _fuse_wrapper(patching, input, batch_size):
return patching.fuse(input=input, batch_size=batch_size)
def _apply_wrapper_select(
input: torch.Tensor, patching: GridPatching2D | None
) -> Callable:
"""
Select the correct patching wrapper based on the input tensor's requires_grad attribute.
If patching is None, return the identity function.
If patching is not None, return the appropriate patching wrapper.
If input.requires_grad is True, return _apply_wrapper_Cout_channels_grad.
If input.requires_grad is False, return
_apply_wrapper_Cout_channels_no_grad.
"""
if patching:
if input.requires_grad:
return _apply_wrapper_Cout_channels_grad
else:
return _apply_wrapper_Cout_channels_no_grad
else:
return lambda patching, input, additional_input=None: input
@nvtx.annotate(message="deterministic_sampler", color="red")
def deterministic_sampler(
net: torch.nn.Module,
latents: torch.Tensor,
img_lr: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
randn_like: Callable = torch.randn_like,
patching: Optional[GridPatching2D] = None,
mean_hr: Optional[torch.Tensor] = None,
lead_time_label: Optional[torch.Tensor] = None,
num_steps: int = 18,
sigma_min: Optional[float] = None,
sigma_max: Optional[float] = None,
rho: float = 7.0,
solver: Literal["heun", "euler"] = "heun",
discretization: Literal["vp", "ve", "iddpm", "edm"] = "edm",
schedule: Literal["vp", "ve", "linear"] = "linear",
scaling: Literal["vp", "none"] = "none",
epsilon_s: float = 1e-3,
C_1: float = 0.001,
C_2: float = 0.008,
M: int = 1000,
alpha: float = 1.0,
S_churn: int = 0,
S_min: float = 0.0,
S_max: float = float("inf"),
S_noise: float = 1.0,
dtype: torch.dtype = torch.float64,
) -> torch.Tensor:
r"""
Generalized sampler, representing the superset of all sampling methods
discussed in the paper `Elucidating the Design Space of Diffusion-Based
Generative Models (EDM) <https://arxiv.org/abs/2206.00364>`_.
This function integrates an ODE (probability flow) or SDE over multiple
time-steps to generate samples from the diffusion model provided by the
argument 'net'. It can be used to combine multiple choices to
design a custom sampler, including multiple integration solver,
discretization method, noise schedule, and so on.
Parameters
----------
net : torch.nn.Module
The diffusion model to use in the sampling process.
latents : torch.Tensor
The latent random noise used as the initial condition for the
stochastic ODE.
img_lr : torch.Tensor
Low-resolution input image for conditioning the diffusion process.
Passed as a keywork argument to the model ``net``.
class_labels : Optional[torch.Tensor]
Labels of the classes used as input to a class-conditionned
diffusion model. Passed as a keyword argument to the model ``net``.
If provided, it must be a tensor containing integer values.
Defaults to ``None``, in which case it is ignored.
randn_like: Callable
Random Number Generator to generate random noise that is added
during the stochastic sampling. Must have the same signature as
torch.randn_like and return torch.Tensor. Defaults to
torch.randn_like.
patching : Optional[GridPatching2D], default=None
A patching utility for patch-based diffusion. Implements methods to
extract patches from an image and batch the patches along dim=0.
Should also implement a ``fuse`` method to reconstruct the original
image from a batch of patches. See
:class:`~physicsnemo.utils.patching.GridPatching2D` for details. By
default ``None``, in which case non-patched diffusion is used.
mean_hr : Optional[Tensor], optional
Optional tensor containing mean high-resolution images for
conditioning. Must have same height and width as ``img_lr``, with shape
:math:`(B_{hr}, C_{hr}, H, W)` where the batch dimension
:math:`B_{hr}` can be either 1, either equal to ``batch_size``, or can be omitted. If
:math:`B_{hr} = 1` or is omitted, ``mean_hr`` will be expanded to match the shape
of ``img_lr``. By default ``None``.
lead_time_label : Optional[Tensor], optional
Lead-time labels to pass to the model, shape ``(batch_size,)``.
If not provided, the model is called without a lead-time label input.
num_steps : Optional[int]
Number of time-steps for the stochastic ODE integration. Defaults
to 18.
sigma_min : Optional[float]
Minimum noise level for the diffusion process. ``sigma_min``,
``sigma_max``, and ``rho`` are used to compute the time-step
discretization, based on the choice of discretization. For the
default choice (``discretization='heun'``), the noise level schedule
is computed as:
:math:`\sigma_i = (\sigma_{max}^{1/\rho} + i / (\text{num_steps} - 1) * (\sigma_{min}^{1/\rho} - \sigma_{max}^{1/\rho}))^{\rho}`.
For other choices of ``discretization``, see details in the EDM
paper. Defaults to ``None``, in which case defaults values depending
of the specified discretization are used.
sigma_max : Optional[float]
Maximum noise level for the diffusion process. See ``sigma_min`` for
details. Defaults to ``None``, in which case defaults values depending
of the specified discretization are used.
rho : float, optional
Exponent used in the noise schedule. See ``sigma_min`` for details.
Only used when ``discretization="heun"``. Values in the range
[5, 10] produce better images. Lower values lead to truncation errors
equalized over all time steps. Defaults to 7.
solver : Literal["heun", "euler"]
The numerical method used to integrate the stochastic ODE. ``"euler"``
is 1st order solver, which is faster but produces lower-quality
images. ``"heun"`` is 2nd order, more expensive, but produces
higher-quality images. Defaults to ``"heun"``.
discretization : Literal["vp", "ve", "iddpm", "edm"]
The method to discretize time-steps :math:`t_i` in the
diffusion process. See the EDM paper for details. Defaults to
``"edm"``.
schedule : Literal["vp", "ve", "linear"]
The type of noise level schedule. Defaults to ``"linear"``. If
``schedule="ve"``, then :math:`\sigma(t) = \sqrt{t}`. If
``schedule="linear"``, then :math:`\sigma(t) = t`. If ``schedule="vp"``,
see EDM paper for details. Defaults to ``"linear"``.
scaling : Literal["vp", "none"]
The type of time-dependent signal scaling :math:`s(t)`, such that
:math:`x = s(t) \hat{x}`. See EDM paper for details on the ``"vp"``
scaling. Defaults to ``"none"``, in which case :math:`s(t)=1`.
epsilon_s : float, optional
Parameter to compute both the noise level schedule and the
time-step discetization. Only used when ``discretization="vp"`` or
``schedule="vp"``. Ignored in other cases. Defaults to 1e-3.
C_1 : float, optional
Parameters to compute the time-step discetization. Only used when
``discretization="iddpm"``. Defaults to 0.001.
C_2 : float, optional
Same as for C_1. Only used when ``discretization="iddpm"``. Defaults to
0.008.
M : int, optional
Same as for C_1 and C_2. Only used when ``discretization="iddpm"``.
Defaults to 1000.
alpha : float, optional
Controls (i.e. multiplies) the step size :math:`t_{i+1} -
\hat{t}_i` in the stochastic sampler, where :math:`\hat{t}_i` is
the temporarily increased noise level. Defaults to 1.0, which is
the recommended value.
S_churn : int, optional
Controls the amount of stochasticty injected in the SDE in the
stochatsic sampler. Larger values of ``S_churn`` lead to larger values
of :math:`\hat{t}_i`, which in turn lead to injecting more
stochasticity in the SDE by Defaults to 0, which means no
stochasticity is injected.
S_min : float, optional
``S_min`` and ``S_max`` control the time-step range over which
stochasticty is injected in the SDE. Stochasticity is injected
through :math:`\hat{t}_i` for time-steps :math:`t_i` such that
:math:`S_{min} \leq t_i \leq S_{max}`. Defaults to 0.0.
S_max : float, optional
See ``S_min``. Defaults to ``float("inf")``.
S_noise : float, optional
Controls the amount of stochasticty injected in the SDE in the
stochatsic sampler. Added signal noise is proportinal to
:math:`\epsilon_i` where :math:`\epsilon_i \sim \mathcal{N}(0, S_{noise}^2)`. Defaults
to 1.0.
dtype : torch.dtype, optional
Controls the precision used for sampling
Returns
-------
torch.Tensor:
Generated batch of samples. Same shape as the input ``latents``.
"""
# conditioning = [mean_hr, img_lr, global_lr]
x_lr = img_lr
if mean_hr is not None:
if mean_hr.shape[-2:] != img_lr.shape[-2:]:
raise ValueError(
f"mean_hr and img_lr must have the same height and width, "
f"but found {mean_hr.shape[-2:]} vs {img_lr.shape[-2:]}."
)
x_lr = torch.cat((mean_hr.expand(x_lr.shape[0], -1, -1, -1), x_lr), dim=1)
# Safety check on type of patching
if patching is not None and not isinstance(patching, GridPatching2D):
raise ValueError("patching must be an instance of GridPatching2D.")
# Safety check: if patching is used then img_lr and latents must have same
# height and width, otherwise there is mismatch in the number
# of patches extracted to form the final batch_size.
if patching:
if img_lr.shape[-2:] != latents.shape[-2:]:
raise ValueError(
f"img_lr and latents must have the same height and width, "
f"but found {img_lr.shape[-2:]} vs {latents.shape[-2:]}. "
)
# img_lr and latents must also have the same batch_size, otherwise mismatch
# when processed by the network
if img_lr.shape[0] != latents.shape[0]:
raise ValueError(
f"img_lr and latents must have the same batch size, but found "
f"{img_lr.shape[0]} vs {latents.shape[0]}."
)
if solver not in ["euler", "heun"]:
raise ValueError(f"Unknown solver {solver}")
if discretization not in ["vp", "ve", "iddpm", "edm"]:
raise ValueError(f"Unknown discretization {discretization}")
if schedule not in ["vp", "ve", "linear"]:
raise ValueError(f"Unknown schedule {schedule}")
if scaling not in ["vp", "none"]:
raise ValueError(f"Unknown scaling {scaling}")
# Helper functions for VP & VE noise level schedules.
vp_sigma = (
lambda beta_d, beta_min: lambda t: (
np.e ** (0.5 * beta_d * (t**2) + beta_min * t) - 1
)
** 0.5
)
vp_sigma_deriv = (
lambda beta_d, beta_min: lambda t: 0.5
* (beta_min + beta_d * t)
* (sigma(t) + 1 / sigma(t))
)
vp_sigma_inv = (
lambda beta_d, beta_min: lambda sigma: (
(beta_min**2 + 2 * beta_d * (sigma**2 + 1).log()).sqrt() - beta_min
)
/ beta_d
)
ve_sigma = lambda t: t.sqrt()
ve_sigma_deriv = lambda t: 0.5 / t.sqrt()
ve_sigma_inv = lambda sigma: sigma**2
# Select default noise level range based on the specified time step discretization.
if sigma_min is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s)
sigma_min = {"vp": vp_def, "ve": 0.02, "iddpm": 0.002, "edm": 0.002}[
discretization
]
if sigma_max is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1)
sigma_max = {"vp": vp_def, "ve": 100, "iddpm": 81, "edm": 80}[discretization]
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
batch_size = img_lr.shape[0]
# input and position padding + patching
if patching:
# Patched conditioning [x_lr, mean_hr]
# (batch_size * patch_num, C_in + C_out, patch_shape_y, patch_shape_x)
x_lr = _apply_wrapper_Cin_channels(
patching=patching, input=x_lr, additional_input=img_lr
)
# Function to select the correct positional embedding for each patch
def patch_embedding_selector(emb):
# emb: (N_pe, image_shape_y, image_shape_x)
# return: (batch_size * patch_num, N_pe, patch_shape_y, patch_shape_x)
return patching.apply(emb.expand(batch_size, -1, -1, -1))
else:
patch_embedding_selector = None
# Compute corresponding betas for VP.
vp_beta_d = (
2
* (np.log(sigma_min**2 + 1) / epsilon_s - np.log(sigma_max**2 + 1))
/ (epsilon_s - 1)
)
vp_beta_min = np.log(sigma_max**2 + 1) - 0.5 * vp_beta_d
# Define time steps in terms of noise level.
step_indices = torch.arange(num_steps, dtype=dtype, device=latents.device)
if discretization == "vp":
orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1)
sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps)
elif discretization == "ve":
orig_t_steps = (sigma_max**2) * (
(sigma_min**2 / sigma_max**2) ** (step_indices / (num_steps - 1))
)
sigma_steps = ve_sigma(orig_t_steps)
elif discretization == "iddpm":
u = torch.zeros(M + 1, dtype=dtype, device=latents.device)
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
for j in torch.arange(M, 0, -1, device=latents.device): # M, ..., 1
u[j - 1] = (
(u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1
).sqrt()
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
sigma_steps = u_filtered[
((len(u_filtered) - 1) / (num_steps - 1) * step_indices)
.round()
.to(torch.int64)
]
else:
sigma_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
# Define noise level schedule.
if schedule == "vp":
sigma = vp_sigma(vp_beta_d, vp_beta_min)
sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min)
sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min)
elif schedule == "ve":
sigma = ve_sigma
sigma_deriv = ve_sigma_deriv
sigma_inv = ve_sigma_inv
else:
sigma = lambda t: t
sigma_deriv = lambda t: 1
sigma_inv = lambda sigma: sigma
# Define scaling schedule.
if scaling == "vp":
s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt()
s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3)
else:
s = lambda t: 1
s_deriv = lambda t: 0
# Compute final time steps based on the corresponding noise levels.
t_steps = sigma_inv(net.round_sigma(sigma_steps))
t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])]) # t_N = 0
# Main sampling loop.
t_next = t_steps[0]
x_next = latents.to(dtype) * (sigma(t_next) * s(t_next))
optional_args = {}
if lead_time_label is not None:
optional_args["lead_time_label"] = lead_time_label
if patching:
optional_args["embedding_selector"] = patch_embedding_selector
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1)
if S_min <= sigma(t_cur) <= S_max
else 0
)
t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur)))
x_hat = s(t_hat) / s(t_cur) * x_cur + (
sigma(t_hat) ** 2 - sigma(t_cur) ** 2
).clip(min=0).sqrt() * s(t_hat) * S_noise * randn_like(x_cur)
# Euler step. Perform patching operation on score tensor if patch-based
# generation is used denoised = net(x_hat, t_hat,
# class_labels,lead_time_label=lead_time_label)
h = t_next - t_hat
x_hat_batch = _apply_wrapper_select(input=x_hat, patching=patching)(
patching=patching, input=x_hat
).to(latents.device)
if isinstance(net, EDMPrecond):
# Conditioning info is passed as keyword arg
denoised = net(
x_hat_batch / s(t_hat),
sigma(t_hat),
condition=x_lr,
class_labels=class_labels,
**optional_args,
).to(dtype)
else:
denoised = net(
x_hat_batch / s(t_hat),
x_lr,
sigma(t_hat),
class_labels,
**optional_args,
).to(dtype)
if patching:
# Un-patch the denoised image
# (batch_size, C_out, img_shape_y, img_shape_x)
denoised = _fuse_wrapper(
patching=patching, input=denoised, batch_size=batch_size
)
d_cur = (
sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)
) * x_hat - sigma_deriv(t_hat) * s(t_hat) / sigma(t_hat) * denoised
x_prime = x_hat + alpha * h * d_cur
t_prime = t_hat + alpha * h
# Apply 2nd order correction.
if solver == "euler" or i == num_steps - 1:
x_next = x_hat + h * d_cur
else:
# Patched input
# (batch_size * patch_num, C_out, patch_shape_y, patch_shape_x)
x_prime_batch = _apply_wrapper_select(input=x_prime, patching=patching)(
patching=patching, input=x_prime
).to(latents.device)
if isinstance(net, EDMPrecond):
# Conditioning info is passed as keyword arg
denoised = net(
x_prime_batch / s(t_prime),
sigma(t_prime),
condition=x_lr,
class_labels=class_labels,
**optional_args,
).to(dtype)
else:
denoised = net(
x_prime_batch / s(t_prime),
x_lr,
sigma(t_prime),
class_labels,
**optional_args,
).to(dtype)
if patching:
# Un-patch the denoised image
# (batch_size, C_out, img_shape_y, img_shape_x)
denoised = _fuse_wrapper(
patching=patching, input=denoised, batch_size=batch_size
)
d_prime = (
sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)
) * x_prime - sigma_deriv(t_prime) * s(t_prime) / sigma(t_prime) * denoised
x_next = x_hat + h * (
(1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime
)
return x_next