Spaces:
Running
Running
import logging | |
import numpy as np | |
import streamlit as st | |
from PIL import Image | |
from streamlit_drawable_canvas import st_canvas | |
from src.ml_utils import predict, get_model, transforms | |
from src.utils import plot_img_with_rects, get_config | |
logging.info('Starting') | |
col1, col2 = st.columns(2) | |
with col1: | |
# Create a canvas component | |
canvas_result = st_canvas( | |
fill_color='#fff', | |
stroke_width=5, | |
stroke_color='#000', | |
background_color='#fff', | |
update_streamlit=True, | |
height=400, | |
width=400, | |
drawing_mode='freedraw', | |
key='canvas', | |
) | |
with col2: | |
data = get_config() | |
logging.info('canvas ready') | |
if canvas_result.image_data is not None: | |
# convert a drawn image into numpy array with RGB from a canvas image with RGBA | |
img = np.array(Image.fromarray(np.uint8(canvas_result.image_data)).convert('RGB')) | |
image = transforms(image=img)['image'] | |
logging.info('image augmented') | |
model = get_model() | |
logging.info('model ready') | |
pred = predict(model, image) | |
logging.info('prediction done') | |
threshold = st.slider('Bbox probability slider', min_value=0.0, max_value=1.0, value=0.5) | |
fig = plot_img_with_rects(image.permute(1, 2, 0).numpy(), pred, threshold, coef=192) | |
fig.savefig('figure_name1.png') | |
image = Image.open('figure_name1.png') | |
st.image(image) | |