digit-draw-detect / st_app.py
Andrey
Add "about" page and more descriptions in readme. Change default thre… (#12)
2c16c94 unverified
raw
history blame
2.03 kB
import logging
import numpy as np
import streamlit as st
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from src.ml_utils import predict, get_model, transforms
from src.utils import plot_img_with_rects, save_image
st.title('Handwritten digit detector')
logging.info('Starting')
col1, col2 = st.columns(2)
with col1:
# Create a canvas component
canvas_result = st_canvas(
fill_color='#fff',
stroke_width=5,
stroke_color='#000',
background_color='#fff',
update_streamlit=True,
height=400,
width=400,
drawing_mode='freedraw',
key='canvas',
)
with col2:
logging.info('canvas ready')
if canvas_result.image_data is not None:
# convert a drawn image into numpy array with RGB from a canvas image with RGBA
img = np.array(Image.fromarray(np.uint8(canvas_result.image_data)).convert('RGB'))
image = transforms(image=img)['image']
logging.info('image augmented')
model = get_model()
logging.info('model ready')
pred = predict(model, image)
logging.info('prediction done')
file_name = save_image(image.permute(1, 2, 0).numpy(), pred)
threshold = st.slider('Bbox probability slider', min_value=0.0, max_value=1.0, value=0.8)
fig = plot_img_with_rects(image.permute(1, 2, 0).numpy(), pred, threshold, coef=192)
fig.savefig(f'{file_name}_temp.png')
image = Image.open(f'{file_name}_temp.png')
st.image(image)
text = """
This is a small app for handwritten digit recognition and recognition developed for fun. It uses a handwritten YOLOv3 model trained from scratch.
You can draw a digit (or whatever you want) and the model will try to understand what is it.
You can use the slider above to show bounding boxes with a probability higher than the threshold.
If you want to know how the app works in more detail, you are welcome to read "About" page.
Enjoy! :)
"""
st.markdown(text, unsafe_allow_html=True)