Spaces:
Runtime error
Runtime error
Upload 59 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +8 -8
- app.py +630 -288
- configs/dit/inference/16x256x256.py +2 -2
- configs/dit/inference/1x256x256-class.py +2 -2
- configs/dit/inference/1x256x256.py +2 -2
- configs/dit/train/16x256x256.py +10 -10
- configs/dit/train/1x256x256.py +10 -9
- configs/latte/inference/16x256x256-class.py +2 -2
- configs/latte/inference/16x256x256.py +2 -2
- configs/latte/train/16x256x256.py +9 -9
- configs/opensora-v1-1/inference/sample-ref.py +64 -0
- configs/opensora-v1-1/inference/sample.py +44 -0
- configs/opensora-v1-1/train/benchmark.py +102 -0
- configs/opensora-v1-1/train/image.py +66 -0
- configs/opensora-v1-1/train/image_rflow.py +88 -0
- configs/opensora-v1-1/train/stage1.py +78 -0
- configs/opensora-v1-1/train/stage2.py +80 -0
- configs/opensora-v1-1/train/stage3.py +80 -0
- configs/opensora-v1-1/train/video.py +68 -0
- configs/opensora-v1-2/inference/sample.py +42 -0
- configs/opensora-v1-2/misc/bs.py +117 -0
- configs/opensora-v1-2/misc/eval_loss.py +49 -0
- configs/opensora-v1-2/misc/extract.py +62 -0
- configs/opensora-v1-2/misc/feat.py +94 -0
- configs/opensora-v1-2/train/adapt.py +84 -0
- configs/opensora-v1-2/train/stage1.py +111 -0
- configs/opensora-v1-2/train/stage1_feat.py +59 -0
- configs/opensora-v1-2/train/stage2.py +90 -0
- configs/opensora-v1-2/train/stage3.py +92 -0
- configs/opensora/inference/16x256x256.py +13 -8
- configs/opensora/inference/16x512x512-rflow.py +35 -0
- configs/opensora/inference/16x512x512.py +7 -7
- configs/opensora/inference/64x512x512.py +5 -5
- configs/opensora/train/16x256x256-mask.py +60 -0
- configs/opensora/train/16x256x256-spee-rflow.py +64 -0
- configs/opensora/train/16x256x256-spee.py +60 -0
- configs/opensora/train/16x256x256.py +10 -10
- configs/opensora/train/16x512x512.py +11 -11
- configs/opensora/train/360x512x512.py +15 -9
- configs/opensora/train/64x512x512-sp.py +11 -11
- configs/opensora/train/64x512x512.py +10 -10
- configs/pixart/inference/16x256x256.py +5 -5
- configs/pixart/inference/1x1024MS.py +4 -4
- configs/pixart/inference/1x20481B.py +36 -0
- configs/pixart/inference/1x2048MS.py +36 -0
- configs/pixart/inference/1x256x256.py +4 -4
- configs/pixart/inference/1x512x512-rflow.py +39 -0
- configs/pixart/inference/1x512x512.py +11 -5
- configs/pixart/train/16x256x256.py +11 -11
- configs/pixart/train/1x2048x2048.py +54 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Open Sora
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.25.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,311 +1,653 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
5 |
-
from src.unet_hacked_tryon import UNet2DConditionModel
|
6 |
-
from transformers import (
|
7 |
-
CLIPImageProcessor,
|
8 |
-
CLIPVisionModelWithProjection,
|
9 |
-
CLIPTextModel,
|
10 |
-
CLIPTextModelWithProjection,
|
11 |
-
)
|
12 |
-
from diffusers import DDPMScheduler,AutoencoderKL
|
13 |
-
from typing import List
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
import os
|
17 |
-
|
18 |
-
import
|
19 |
-
from
|
20 |
-
from torchvision import transforms
|
21 |
-
import apply_net
|
22 |
-
from preprocess.humanparsing.run_parsing import Parsing
|
23 |
-
from preprocess.openpose.run_openpose import OpenPose
|
24 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
25 |
-
from torchvision.transforms.functional import to_pil_image
|
26 |
-
|
27 |
-
|
28 |
-
def pil_to_binary_mask(pil_image, threshold=0):
|
29 |
-
np_image = np.array(pil_image)
|
30 |
-
grayscale_image = Image.fromarray(np_image).convert("L")
|
31 |
-
binary_mask = np.array(grayscale_image) > threshold
|
32 |
-
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
33 |
-
for i in range(binary_mask.shape[0]):
|
34 |
-
for j in range(binary_mask.shape[1]):
|
35 |
-
if binary_mask[i,j] == True :
|
36 |
-
mask[i,j] = 1
|
37 |
-
mask = (mask*255).astype(np.uint8)
|
38 |
-
output_mask = Image.fromarray(mask)
|
39 |
-
return output_mask
|
40 |
-
|
41 |
-
|
42 |
-
base_path = 'yisol/IDM-VTON'
|
43 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
44 |
-
|
45 |
-
unet = UNet2DConditionModel.from_pretrained(
|
46 |
-
base_path,
|
47 |
-
subfolder="unet",
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
)
|
50 |
-
unet.requires_grad_(False)
|
51 |
-
tokenizer_one = AutoTokenizer.from_pretrained(
|
52 |
-
base_path,
|
53 |
-
subfolder="tokenizer",
|
54 |
-
revision=None,
|
55 |
-
use_fast=False,
|
56 |
-
)
|
57 |
-
tokenizer_two = AutoTokenizer.from_pretrained(
|
58 |
-
base_path,
|
59 |
-
subfolder="tokenizer_2",
|
60 |
-
revision=None,
|
61 |
-
use_fast=False,
|
62 |
-
)
|
63 |
-
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
subfolder="text_encoder",
|
68 |
-
torch_dtype=torch.float16,
|
69 |
-
)
|
70 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
71 |
-
base_path,
|
72 |
-
subfolder="text_encoder_2",
|
73 |
-
torch_dtype=torch.float16,
|
74 |
-
)
|
75 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
76 |
-
base_path,
|
77 |
-
subfolder="image_encoder",
|
78 |
-
torch_dtype=torch.float16,
|
79 |
-
)
|
80 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
81 |
-
subfolder="vae",
|
82 |
-
torch_dtype=torch.float16,
|
83 |
-
)
|
84 |
|
85 |
-
|
86 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
87 |
-
base_path,
|
88 |
-
subfolder="unet_encoder",
|
89 |
-
torch_dtype=torch.float16,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
vae=vae,
|
112 |
-
feature_extractor= CLIPImageProcessor(),
|
113 |
-
text_encoder = text_encoder_one,
|
114 |
-
text_encoder_2 = text_encoder_two,
|
115 |
-
tokenizer = tokenizer_one,
|
116 |
-
tokenizer_2 = tokenizer_two,
|
117 |
-
scheduler = noise_scheduler,
|
118 |
-
image_encoder=image_encoder,
|
119 |
-
torch_dtype=torch.float16,
|
120 |
-
)
|
121 |
-
pipe.unet_encoder = UNet_Encoder
|
122 |
-
|
123 |
-
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
124 |
-
device = "cuda"
|
125 |
-
|
126 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
127 |
-
pipe.to(device)
|
128 |
-
pipe.unet_encoder.to(device)
|
129 |
-
|
130 |
-
garm_img= garm_img.convert("RGB").resize((768,1024))
|
131 |
-
human_img_orig = dict["background"].convert("RGB")
|
132 |
-
|
133 |
-
if is_checked_crop:
|
134 |
-
width, height = human_img_orig.size
|
135 |
-
target_width = int(min(width, height * (3 / 4)))
|
136 |
-
target_height = int(min(height, width * (4 / 3)))
|
137 |
-
left = (width - target_width) / 2
|
138 |
-
top = (height - target_height) / 2
|
139 |
-
right = (width + target_width) / 2
|
140 |
-
bottom = (height + target_height) / 2
|
141 |
-
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
142 |
-
crop_size = cropped_img.size
|
143 |
-
human_img = cropped_img.resize((768,1024))
|
144 |
-
else:
|
145 |
-
human_img = human_img_orig.resize((768,1024))
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
if is_checked:
|
149 |
-
keypoints = openpose_model(human_img.resize((384,512)))
|
150 |
-
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
151 |
-
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
152 |
-
mask = mask.resize((768,1024))
|
153 |
-
else:
|
154 |
-
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
155 |
-
# mask = transforms.ToTensor()(mask)
|
156 |
-
# mask = mask.unsqueeze(0)
|
157 |
-
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
158 |
-
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
159 |
-
|
160 |
-
|
161 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
162 |
-
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
167 |
-
# verbosity = getattr(args, "verbosity", None)
|
168 |
-
pose_img = args.func(args,human_img_arg)
|
169 |
-
pose_img = pose_img[:,:,::-1]
|
170 |
-
pose_img = Image.fromarray(pose_img).resize((768,1024))
|
171 |
-
|
172 |
-
with torch.no_grad():
|
173 |
-
# Extract the images
|
174 |
-
with torch.cuda.amp.autocast():
|
175 |
-
with torch.no_grad():
|
176 |
-
prompt = "model is wearing " + garment_des
|
177 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
178 |
-
with torch.inference_mode():
|
179 |
-
(
|
180 |
-
prompt_embeds,
|
181 |
-
negative_prompt_embeds,
|
182 |
-
pooled_prompt_embeds,
|
183 |
-
negative_pooled_prompt_embeds,
|
184 |
-
) = pipe.encode_prompt(
|
185 |
-
prompt,
|
186 |
-
num_images_per_prompt=1,
|
187 |
-
do_classifier_free_guidance=True,
|
188 |
-
negative_prompt=negative_prompt,
|
189 |
-
)
|
190 |
-
|
191 |
-
prompt = "a photo of " + garment_des
|
192 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
193 |
-
if not isinstance(prompt, List):
|
194 |
-
prompt = [prompt] * 1
|
195 |
-
if not isinstance(negative_prompt, List):
|
196 |
-
negative_prompt = [negative_prompt] * 1
|
197 |
-
with torch.inference_mode():
|
198 |
-
(
|
199 |
-
prompt_embeds_c,
|
200 |
-
_,
|
201 |
-
_,
|
202 |
-
_,
|
203 |
-
) = pipe.encode_prompt(
|
204 |
-
prompt,
|
205 |
-
num_images_per_prompt=1,
|
206 |
-
do_classifier_free_guidance=False,
|
207 |
-
negative_prompt=negative_prompt,
|
208 |
-
)
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
|
|
211 |
|
212 |
-
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
213 |
-
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
214 |
-
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
215 |
-
pipe.enable_vae_slicing()
|
216 |
-
pipe.enable_xformers_memory_efficient_attention()
|
217 |
-
pipe.enable_vae_tiling()
|
218 |
-
images = pipe(
|
219 |
-
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
220 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
221 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
222 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
223 |
-
num_inference_steps=denoise_steps,
|
224 |
-
generator=generator,
|
225 |
-
strength = 1.0,
|
226 |
-
pose_img = pose_img.to(device,torch.float16),
|
227 |
-
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
228 |
-
cloth = garm_tensor.to(device,torch.float16),
|
229 |
-
mask_image=mask,
|
230 |
-
image=human_img,
|
231 |
-
height=1024,
|
232 |
-
width=768,
|
233 |
-
ip_adapter_image = garm_img.resize((768,1024)),
|
234 |
-
guidance_scale=2.0,
|
235 |
-
)[0]
|
236 |
-
|
237 |
-
if is_checked_crop:
|
238 |
-
out_img = images[0].resize(crop_size)
|
239 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
240 |
-
return human_img_orig, mask_gray
|
241 |
-
else:
|
242 |
-
return images[0], mask_gray
|
243 |
-
# return images[0], mask_gray
|
244 |
-
|
245 |
-
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
246 |
-
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
247 |
-
|
248 |
-
human_list = os.listdir(os.path.join(example_path,"human"))
|
249 |
-
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
250 |
-
|
251 |
-
human_ex_list = []
|
252 |
-
for ex_human in human_list_path:
|
253 |
-
ex_dict= {}
|
254 |
-
ex_dict['background'] = ex_human
|
255 |
-
ex_dict['layers'] = None
|
256 |
-
ex_dict['composite'] = None
|
257 |
-
human_ex_list.append(ex_dict)
|
258 |
-
|
259 |
-
##default human
|
260 |
-
|
261 |
-
image_blocks = gr.Blocks().queue()
|
262 |
-
with image_blocks as demo:
|
263 |
-
with gr.Row():
|
264 |
-
with gr.Column():
|
265 |
-
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
266 |
-
with gr.Row():
|
267 |
-
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
268 |
-
with gr.Row():
|
269 |
-
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
270 |
-
|
271 |
-
example = gr.Examples(
|
272 |
-
inputs=imgs,
|
273 |
-
examples_per_page=10,
|
274 |
-
examples=human_ex_list
|
275 |
-
)
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
inputs=garm_img,
|
284 |
-
examples_per_page=8,
|
285 |
-
examples=garm_list_path)
|
286 |
-
with gr.Column():
|
287 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
288 |
-
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
289 |
-
with gr.Column():
|
290 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
291 |
-
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
292 |
|
|
|
293 |
|
|
|
|
|
|
|
294 |
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
299 |
-
with gr.Row():
|
300 |
-
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
301 |
-
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
302 |
|
|
|
|
|
303 |
|
|
|
304 |
|
305 |
-
|
|
|
306 |
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
This script runs a Gradio App for the Open-Sora model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
Usage:
|
6 |
+
python demo.py <config-path>
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import datetime
|
11 |
+
import importlib
|
12 |
import os
|
13 |
+
import subprocess
|
14 |
+
import sys
|
15 |
+
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
import spaces
|
18 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
MODEL_TYPES = ["v1.2-stage3"]
|
23 |
+
WATERMARK_PATH = "./assets/images/watermark/watermark.png"
|
24 |
+
CONFIG_MAP = {
|
25 |
+
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
|
26 |
+
}
|
27 |
+
HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"}
|
28 |
+
|
29 |
+
|
30 |
+
# ============================
|
31 |
+
# Prepare Runtime Environment
|
32 |
+
# ============================
|
33 |
+
def install_dependencies(enable_optimization=False):
|
34 |
+
"""
|
35 |
+
Install the required dependencies for the demo if they are not already installed.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def _is_package_available(name) -> bool:
|
39 |
+
try:
|
40 |
+
importlib.import_module(name)
|
41 |
+
return True
|
42 |
+
except (ImportError, ModuleNotFoundError):
|
43 |
+
return False
|
44 |
+
|
45 |
+
if enable_optimization:
|
46 |
+
# install flash attention
|
47 |
+
if not _is_package_available("flash_attn"):
|
48 |
+
subprocess.run(
|
49 |
+
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
|
50 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
51 |
+
shell=True,
|
52 |
+
)
|
53 |
+
|
54 |
+
# install apex for fused layernorm
|
55 |
+
if not _is_package_available("apex"):
|
56 |
+
subprocess.run(
|
57 |
+
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
|
58 |
+
shell=True,
|
59 |
+
)
|
60 |
|
61 |
+
# install ninja
|
62 |
+
if not _is_package_available("ninja"):
|
63 |
+
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# install xformers
|
66 |
+
if not _is_package_available("xformers"):
|
67 |
+
subprocess.run(
|
68 |
+
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
|
69 |
+
shell=True,
|
70 |
+
)
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# ============================
|
74 |
+
# Model-related
|
75 |
+
# ============================
|
76 |
+
def read_config(config_path):
|
77 |
+
"""
|
78 |
+
Read the configuration file.
|
79 |
+
"""
|
80 |
+
from mmengine.config import Config
|
81 |
|
82 |
+
return Config.fromfile(config_path)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
def build_models(model_type, config, enable_optimization=False):
|
86 |
+
"""
|
87 |
+
Build the models for the given model type and configuration.
|
88 |
+
"""
|
89 |
+
# build vae
|
90 |
+
from opensora.registry import MODELS, build_module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
vae = build_module(config.vae, MODELS).cuda()
|
93 |
|
94 |
+
# build text encoder
|
95 |
+
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
|
96 |
+
text_encoder.t5.model = text_encoder.t5.model.cuda()
|
97 |
|
98 |
+
# build stdit
|
99 |
+
# we load model from HuggingFace directly so that we don't need to
|
100 |
+
# handle model download logic in HuggingFace Space
|
101 |
+
from opensora.models.stdit.stdit3 import STDiT3
|
102 |
|
103 |
+
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type])
|
104 |
+
stdit = stdit.cuda()
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# build scheduler
|
107 |
+
from opensora.registry import SCHEDULERS
|
108 |
|
109 |
+
scheduler = build_module(config.scheduler, SCHEDULERS)
|
110 |
|
111 |
+
# hack for classifier-free guidance
|
112 |
+
text_encoder.y_embedder = stdit.y_embedder
|
113 |
|
114 |
+
# move modelst to device
|
115 |
+
vae = vae.to(torch.bfloat16).eval()
|
116 |
+
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
|
117 |
+
stdit = stdit.to(torch.bfloat16).eval()
|
118 |
+
|
119 |
+
# clear cuda
|
120 |
+
torch.cuda.empty_cache()
|
121 |
+
return vae, text_encoder, stdit, scheduler
|
122 |
|
123 |
|
124 |
+
def parse_args():
|
125 |
+
parser = argparse.ArgumentParser()
|
126 |
+
parser.add_argument(
|
127 |
+
"--model-type",
|
128 |
+
default="v1.2-stage3",
|
129 |
+
choices=MODEL_TYPES,
|
130 |
+
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
131 |
+
)
|
132 |
+
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
|
133 |
+
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
|
134 |
+
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
|
135 |
+
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
|
136 |
+
parser.add_argument(
|
137 |
+
"--enable-optimization",
|
138 |
+
action="store_true",
|
139 |
+
help="Whether to enable optimization such as flash attention and fused layernorm",
|
140 |
+
)
|
141 |
+
return parser.parse_args()
|
142 |
+
|
143 |
+
|
144 |
+
# ============================
|
145 |
+
# Main Gradio Script
|
146 |
+
# ============================
|
147 |
+
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
|
148 |
+
# so we can't pass the models to `run_inference` as arguments.
|
149 |
+
# instead, we need to define them globally so that we can access these models inside `run_inference`
|
150 |
+
|
151 |
+
# read config
|
152 |
+
args = parse_args()
|
153 |
+
config = read_config(CONFIG_MAP[args.model_type])
|
154 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
155 |
+
torch.backends.cudnn.allow_tf32 = True
|
156 |
+
|
157 |
+
# make outputs dir
|
158 |
+
os.makedirs(args.output, exist_ok=True)
|
159 |
+
|
160 |
+
# disable torch jit as it can cause failure in gradio SDK
|
161 |
+
# gradio sdk uses torch with cuda 11.3
|
162 |
+
torch.jit._state.disable()
|
163 |
+
|
164 |
+
# set up
|
165 |
+
install_dependencies(enable_optimization=args.enable_optimization)
|
166 |
+
|
167 |
+
# import after installation
|
168 |
+
from opensora.datasets import IMG_FPS, save_sample
|
169 |
+
from opensora.datasets.aspect import get_image_size, get_num_frames
|
170 |
+
from opensora.models.text_encoder.t5 import text_preprocessing
|
171 |
+
from opensora.utils.inference_utils import (
|
172 |
+
add_watermark,
|
173 |
+
append_generated,
|
174 |
+
append_score_to_prompts,
|
175 |
+
apply_mask_strategy,
|
176 |
+
collect_references_batch,
|
177 |
+
dframe_to_frame,
|
178 |
+
extract_json_from_prompts,
|
179 |
+
extract_prompts_loop,
|
180 |
+
get_random_prompt_by_openai,
|
181 |
+
has_openai_key,
|
182 |
+
merge_prompt,
|
183 |
+
prepare_multi_resolution_info,
|
184 |
+
refine_prompts_by_openai,
|
185 |
+
split_prompt,
|
186 |
+
has_openai_key
|
187 |
+
)
|
188 |
+
from opensora.utils.misc import to_torch_dtype
|
189 |
+
|
190 |
+
# some global variables
|
191 |
+
dtype = to_torch_dtype(config.dtype)
|
192 |
+
device = torch.device("cuda")
|
193 |
+
|
194 |
+
# build model
|
195 |
+
vae, text_encoder, stdit, scheduler = build_models(
|
196 |
+
args.model_type, config, enable_optimization=args.enable_optimization
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
def run_inference(
|
201 |
+
mode,
|
202 |
+
prompt_text,
|
203 |
+
resolution,
|
204 |
+
aspect_ratio,
|
205 |
+
length,
|
206 |
+
motion_strength,
|
207 |
+
aesthetic_score,
|
208 |
+
use_motion_strength,
|
209 |
+
use_aesthetic_score,
|
210 |
+
camera_motion,
|
211 |
+
reference_image,
|
212 |
+
refine_prompt,
|
213 |
+
fps,
|
214 |
+
num_loop,
|
215 |
+
seed,
|
216 |
+
sampling_steps,
|
217 |
+
cfg_scale,
|
218 |
+
):
|
219 |
+
if prompt_text is None or prompt_text == "":
|
220 |
+
gr.Warning("Your prompt is empty, please enter a valid prompt")
|
221 |
+
return None
|
222 |
+
|
223 |
+
torch.manual_seed(seed)
|
224 |
+
with torch.inference_mode():
|
225 |
+
# ======================
|
226 |
+
# 1. Preparation arguments
|
227 |
+
# ======================
|
228 |
+
# parse the inputs
|
229 |
+
# frame_interval must be 1 so we ignore it here
|
230 |
+
image_size = get_image_size(resolution, aspect_ratio)
|
231 |
+
|
232 |
+
# compute generation parameters
|
233 |
+
if mode == "Text2Image":
|
234 |
+
num_frames = 1
|
235 |
+
fps = IMG_FPS
|
236 |
+
else:
|
237 |
+
num_frames = config.num_frames
|
238 |
+
num_frames = get_num_frames(length)
|
239 |
+
|
240 |
+
condition_frame_length = int(num_frames / 17 * 5 / 3)
|
241 |
+
condition_frame_edit = 0.0
|
242 |
+
|
243 |
+
input_size = (num_frames, *image_size)
|
244 |
+
latent_size = vae.get_latent_size(input_size)
|
245 |
+
multi_resolution = "OpenSora"
|
246 |
+
align = 5
|
247 |
+
|
248 |
+
# == prepare mask strategy ==
|
249 |
+
if mode == "Text2Image":
|
250 |
+
mask_strategy = [None]
|
251 |
+
elif mode == "Text2Video":
|
252 |
+
if reference_image is not None:
|
253 |
+
mask_strategy = ["0"]
|
254 |
+
else:
|
255 |
+
mask_strategy = [None]
|
256 |
+
else:
|
257 |
+
raise ValueError(f"Invalid mode: {mode}")
|
258 |
+
|
259 |
+
# == prepare reference ==
|
260 |
+
if mode == "Text2Image":
|
261 |
+
refs = [""]
|
262 |
+
elif mode == "Text2Video":
|
263 |
+
if reference_image is not None:
|
264 |
+
# save image to disk
|
265 |
+
from PIL import Image
|
266 |
+
|
267 |
+
im = Image.fromarray(reference_image)
|
268 |
+
temp_file = NamedTemporaryFile(suffix=".png")
|
269 |
+
im.save(temp_file.name)
|
270 |
+
refs = [temp_file.name]
|
271 |
+
else:
|
272 |
+
refs = [""]
|
273 |
+
else:
|
274 |
+
raise ValueError(f"Invalid mode: {mode}")
|
275 |
+
|
276 |
+
# == get json from prompts ==
|
277 |
+
batch_prompts = [prompt_text]
|
278 |
+
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
|
279 |
+
|
280 |
+
# == get reference for condition ==
|
281 |
+
refs = collect_references_batch(refs, vae, image_size)
|
282 |
+
|
283 |
+
# == multi-resolution info ==
|
284 |
+
model_args = prepare_multi_resolution_info(
|
285 |
+
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
|
286 |
+
)
|
287 |
+
|
288 |
+
# == process prompts step by step ==
|
289 |
+
# 0. split prompt
|
290 |
+
# each element in the list is [prompt_segment_list, loop_idx_list]
|
291 |
+
batched_prompt_segment_list = []
|
292 |
+
batched_loop_idx_list = []
|
293 |
+
for prompt in batch_prompts:
|
294 |
+
prompt_segment_list, loop_idx_list = split_prompt(prompt)
|
295 |
+
batched_prompt_segment_list.append(prompt_segment_list)
|
296 |
+
batched_loop_idx_list.append(loop_idx_list)
|
297 |
+
|
298 |
+
# 1. refine prompt by openai
|
299 |
+
if refine_prompt:
|
300 |
+
# check if openai key is provided
|
301 |
+
if not has_openai_key():
|
302 |
+
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
|
303 |
+
else:
|
304 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
305 |
+
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
|
306 |
+
|
307 |
+
# process scores
|
308 |
+
aesthetic_score = aesthetic_score if use_aesthetic_score else None
|
309 |
+
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
|
310 |
+
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
|
311 |
+
# 2. append score
|
312 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
313 |
+
batched_prompt_segment_list[idx] = append_score_to_prompts(
|
314 |
+
prompt_segment_list,
|
315 |
+
aes=aesthetic_score,
|
316 |
+
flow=motion_strength,
|
317 |
+
camera_motion=camera_motion,
|
318 |
+
)
|
319 |
+
|
320 |
+
# 3. clean prompt with T5
|
321 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
322 |
+
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
|
323 |
+
|
324 |
+
# 4. merge to obtain the final prompt
|
325 |
+
batch_prompts = []
|
326 |
+
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
|
327 |
+
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
|
328 |
+
|
329 |
+
# =========================
|
330 |
+
# Generate image/video
|
331 |
+
# =========================
|
332 |
+
video_clips = []
|
333 |
+
|
334 |
+
for loop_i in range(num_loop):
|
335 |
+
# 4.4 sample in hidden space
|
336 |
+
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
|
337 |
+
|
338 |
+
# == loop ==
|
339 |
+
if loop_i > 0:
|
340 |
+
refs, mask_strategy = append_generated(
|
341 |
+
vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit
|
342 |
+
)
|
343 |
+
|
344 |
+
# == sampling ==
|
345 |
+
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
|
346 |
+
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
|
347 |
+
|
348 |
+
# 4.6. diffusion sampling
|
349 |
+
# hack to update num_sampling_steps and cfg_scale
|
350 |
+
scheduler_kwargs = config.scheduler.copy()
|
351 |
+
scheduler_kwargs.pop("type")
|
352 |
+
scheduler_kwargs["num_sampling_steps"] = sampling_steps
|
353 |
+
scheduler_kwargs["cfg_scale"] = cfg_scale
|
354 |
+
|
355 |
+
scheduler.__init__(**scheduler_kwargs)
|
356 |
+
samples = scheduler.sample(
|
357 |
+
stdit,
|
358 |
+
text_encoder,
|
359 |
+
z=z,
|
360 |
+
prompts=batch_prompts_loop,
|
361 |
+
device=device,
|
362 |
+
additional_args=model_args,
|
363 |
+
progress=True,
|
364 |
+
mask=masks,
|
365 |
+
)
|
366 |
+
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
|
367 |
+
video_clips.append(samples)
|
368 |
+
|
369 |
+
# =========================
|
370 |
+
# Save output
|
371 |
+
# =========================
|
372 |
+
video_clips = [val[0] for val in video_clips]
|
373 |
+
for i in range(1, num_loop):
|
374 |
+
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
|
375 |
+
video = torch.cat(video_clips, dim=1)
|
376 |
+
current_datetime = datetime.datetime.now()
|
377 |
+
timestamp = current_datetime.timestamp()
|
378 |
+
save_path = os.path.join(args.output, f"output_{timestamp}")
|
379 |
+
saved_path = save_sample(video, save_path=save_path, fps=24)
|
380 |
+
torch.cuda.empty_cache()
|
381 |
+
|
382 |
+
# add watermark
|
383 |
+
# all watermarked videos should have a _watermarked suffix
|
384 |
+
if mode != "Text2Image" and os.path.exists(WATERMARK_PATH):
|
385 |
+
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
|
386 |
+
success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path)
|
387 |
+
if success:
|
388 |
+
return watermarked_path
|
389 |
+
else:
|
390 |
+
return saved_path
|
391 |
+
else:
|
392 |
+
return saved_path
|
393 |
+
|
394 |
+
|
395 |
+
@spaces.GPU()
|
396 |
+
def run_image_inference(
|
397 |
+
prompt_text,
|
398 |
+
resolution,
|
399 |
+
aspect_ratio,
|
400 |
+
length,
|
401 |
+
motion_strength,
|
402 |
+
aesthetic_score,
|
403 |
+
use_motion_strength,
|
404 |
+
use_aesthetic_score,
|
405 |
+
camera_motion,
|
406 |
+
reference_image,
|
407 |
+
refine_prompt,
|
408 |
+
fps,
|
409 |
+
num_loop,
|
410 |
+
seed,
|
411 |
+
sampling_steps,
|
412 |
+
cfg_scale,
|
413 |
+
):
|
414 |
+
return run_inference(
|
415 |
+
"Text2Image",
|
416 |
+
prompt_text,
|
417 |
+
resolution,
|
418 |
+
aspect_ratio,
|
419 |
+
length,
|
420 |
+
motion_strength,
|
421 |
+
aesthetic_score,
|
422 |
+
use_motion_strength,
|
423 |
+
use_aesthetic_score,
|
424 |
+
camera_motion,
|
425 |
+
reference_image,
|
426 |
+
refine_prompt,
|
427 |
+
fps,
|
428 |
+
num_loop,
|
429 |
+
seed,
|
430 |
+
sampling_steps,
|
431 |
+
cfg_scale,
|
432 |
+
)
|
433 |
+
|
434 |
+
|
435 |
+
@spaces.GPU(duration=200)
|
436 |
+
def run_video_inference(
|
437 |
+
prompt_text,
|
438 |
+
resolution,
|
439 |
+
aspect_ratio,
|
440 |
+
length,
|
441 |
+
motion_strength,
|
442 |
+
aesthetic_score,
|
443 |
+
use_motion_strength,
|
444 |
+
use_aesthetic_score,
|
445 |
+
camera_motion,
|
446 |
+
reference_image,
|
447 |
+
refine_prompt,
|
448 |
+
fps,
|
449 |
+
num_loop,
|
450 |
+
seed,
|
451 |
+
sampling_steps,
|
452 |
+
cfg_scale,
|
453 |
+
):
|
454 |
+
# if (resolution == "480p" and length == "16s") or \
|
455 |
+
# (resolution == "720p" and length in ["8s", "16s"]):
|
456 |
+
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
|
457 |
+
# else:
|
458 |
+
return run_inference(
|
459 |
+
"Text2Video",
|
460 |
+
prompt_text,
|
461 |
+
resolution,
|
462 |
+
aspect_ratio,
|
463 |
+
length,
|
464 |
+
motion_strength,
|
465 |
+
aesthetic_score,
|
466 |
+
use_motion_strength,
|
467 |
+
use_aesthetic_score,
|
468 |
+
camera_motion,
|
469 |
+
reference_image,
|
470 |
+
refine_prompt,
|
471 |
+
fps,
|
472 |
+
num_loop,
|
473 |
+
seed,
|
474 |
+
sampling_steps,
|
475 |
+
cfg_scale,
|
476 |
+
)
|
477 |
+
|
478 |
+
|
479 |
+
def generate_random_prompt():
|
480 |
+
if "OPENAI_API_KEY" not in os.environ:
|
481 |
+
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
|
482 |
+
return None
|
483 |
+
else:
|
484 |
+
prompt_text = get_random_prompt_by_openai()
|
485 |
+
return prompt_text
|
486 |
+
|
487 |
+
|
488 |
+
def main():
|
489 |
+
# create demo
|
490 |
+
with gr.Blocks() as demo:
|
491 |
+
with gr.Row():
|
492 |
+
with gr.Column():
|
493 |
+
gr.HTML(
|
494 |
+
"""
|
495 |
+
<div style='text-align: center;'>
|
496 |
+
<p align="center">
|
497 |
+
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
|
498 |
+
</p>
|
499 |
+
<div style="display: flex; gap: 10px; justify-content: center;">
|
500 |
+
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
|
501 |
+
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a>
|
502 |
+
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a>
|
503 |
+
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a>
|
504 |
+
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a>
|
505 |
+
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a>
|
506 |
+
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
|
507 |
+
</div>
|
508 |
+
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
|
509 |
+
</div>
|
510 |
+
"""
|
511 |
+
)
|
512 |
+
|
513 |
+
with gr.Row():
|
514 |
+
with gr.Column():
|
515 |
+
prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4)
|
516 |
+
refine_prompt = gr.Checkbox(value=has_openai_key(), label="Refine prompt with GPT4o", interactive=has_openai_key())
|
517 |
+
random_prompt_btn = gr.Button("Random Prompt By GPT4o", interactive=has_openai_key())
|
518 |
+
|
519 |
+
gr.Markdown("## Basic Settings")
|
520 |
+
resolution = gr.Radio(
|
521 |
+
choices=["144p", "240p", "360p", "480p", "720p"],
|
522 |
+
value="240p",
|
523 |
+
label="Resolution",
|
524 |
+
)
|
525 |
+
aspect_ratio = gr.Radio(
|
526 |
+
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
|
527 |
+
value="9:16",
|
528 |
+
label="Aspect Ratio (H:W)",
|
529 |
+
)
|
530 |
+
length = gr.Radio(
|
531 |
+
choices=["2s", "4s", "8s", "16s"],
|
532 |
+
value="2s",
|
533 |
+
label="Video Length",
|
534 |
+
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.",
|
535 |
+
)
|
536 |
+
|
537 |
+
with gr.Row():
|
538 |
+
seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed")
|
539 |
+
|
540 |
+
sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps")
|
541 |
+
cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale")
|
542 |
+
|
543 |
+
with gr.Row():
|
544 |
+
with gr.Column():
|
545 |
+
motion_strength = gr.Slider(
|
546 |
+
value=5,
|
547 |
+
minimum=0,
|
548 |
+
maximum=100,
|
549 |
+
step=1,
|
550 |
+
label="Motion Strength",
|
551 |
+
info="only effective for video generation",
|
552 |
+
)
|
553 |
+
use_motion_strength = gr.Checkbox(value=False, label="Enable")
|
554 |
+
|
555 |
+
with gr.Column():
|
556 |
+
aesthetic_score = gr.Slider(
|
557 |
+
value=6.5,
|
558 |
+
minimum=4,
|
559 |
+
maximum=7,
|
560 |
+
step=0.1,
|
561 |
+
label="Aesthetic",
|
562 |
+
info="effective for text & video generation",
|
563 |
+
)
|
564 |
+
use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
|
565 |
+
|
566 |
+
camera_motion = gr.Radio(
|
567 |
+
value="none",
|
568 |
+
label="Camera Motion",
|
569 |
+
choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"],
|
570 |
+
interactive=True,
|
571 |
+
)
|
572 |
+
|
573 |
+
gr.Markdown("## Advanced Settings")
|
574 |
+
with gr.Row():
|
575 |
+
fps = gr.Slider(
|
576 |
+
value=24,
|
577 |
+
minimum=1,
|
578 |
+
maximum=60,
|
579 |
+
step=1,
|
580 |
+
label="FPS",
|
581 |
+
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure",
|
582 |
+
)
|
583 |
+
num_loop = gr.Slider(
|
584 |
+
value=1,
|
585 |
+
minimum=1,
|
586 |
+
maximum=20,
|
587 |
+
step=1,
|
588 |
+
label="Number of Loops",
|
589 |
+
info="This will change the length of the generated video, keep it to 1 if you are not sure",
|
590 |
+
)
|
591 |
|
592 |
+
gr.Markdown("## Reference Image")
|
593 |
+
reference_image = gr.Image(label="Image (optional)", show_download_button=True)
|
594 |
+
|
595 |
+
with gr.Column():
|
596 |
+
output_video = gr.Video(label="Output Video", height="100%")
|
597 |
+
|
598 |
+
with gr.Row():
|
599 |
+
image_gen_button = gr.Button("Generate image")
|
600 |
+
video_gen_button = gr.Button("Generate video")
|
601 |
+
|
602 |
+
image_gen_button.click(
|
603 |
+
fn=run_image_inference,
|
604 |
+
inputs=[
|
605 |
+
prompt_text,
|
606 |
+
resolution,
|
607 |
+
aspect_ratio,
|
608 |
+
length,
|
609 |
+
motion_strength,
|
610 |
+
aesthetic_score,
|
611 |
+
use_motion_strength,
|
612 |
+
use_aesthetic_score,
|
613 |
+
camera_motion,
|
614 |
+
reference_image,
|
615 |
+
refine_prompt,
|
616 |
+
fps,
|
617 |
+
num_loop,
|
618 |
+
seed,
|
619 |
+
sampling_steps,
|
620 |
+
cfg_scale,
|
621 |
+
],
|
622 |
+
outputs=reference_image,
|
623 |
+
)
|
624 |
+
video_gen_button.click(
|
625 |
+
fn=run_video_inference,
|
626 |
+
inputs=[
|
627 |
+
prompt_text,
|
628 |
+
resolution,
|
629 |
+
aspect_ratio,
|
630 |
+
length,
|
631 |
+
motion_strength,
|
632 |
+
aesthetic_score,
|
633 |
+
use_motion_strength,
|
634 |
+
use_aesthetic_score,
|
635 |
+
camera_motion,
|
636 |
+
reference_image,
|
637 |
+
refine_prompt,
|
638 |
+
fps,
|
639 |
+
num_loop,
|
640 |
+
seed,
|
641 |
+
sampling_steps,
|
642 |
+
cfg_scale,
|
643 |
+
],
|
644 |
+
outputs=output_video,
|
645 |
+
)
|
646 |
+
random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text)
|
647 |
+
|
648 |
+
# launch
|
649 |
+
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
650 |
+
|
651 |
+
|
652 |
+
if __name__ == "__main__":
|
653 |
+
main()
|
configs/dit/inference/16x256x256.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256-class.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/dit/inference/1x256x256.py
CHANGED
@@ -23,10 +23,10 @@ scheduler = dict(
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=4.0,
|
25 |
)
|
26 |
-
dtype = "
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
-
save_dir = "./
|
|
|
23 |
num_sampling_steps=20,
|
24 |
cfg_scale=4.0,
|
25 |
)
|
26 |
+
dtype = "bf16"
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/dit/train/16x256x256.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
@@ -18,7 +18,7 @@ sp_size = 1
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
-
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
+
enable_flash_attn=True,
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
configs/dit/train/1x256x256.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
-
num_frames = 1
|
2 |
-
frame_interval = 1
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = False
|
14 |
plugin = "zero2"
|
@@ -18,7 +19,7 @@ sp_size = 1
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
no_temporal_pos_emb=True,
|
21 |
-
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=1,
|
7 |
+
image_size=(256, 256),
|
8 |
+
transform_name="center",
|
9 |
+
)
|
10 |
|
11 |
# Define acceleration
|
12 |
+
num_workers = 4
|
13 |
dtype = "bf16"
|
14 |
grad_checkpoint = False
|
15 |
plugin = "zero2"
|
|
|
19 |
model = dict(
|
20 |
type="DiT-XL/2",
|
21 |
no_temporal_pos_emb=True,
|
22 |
+
enable_flash_attn=True,
|
23 |
enable_layernorm_kernel=True,
|
24 |
)
|
25 |
vae = dict(
|
configs/latte/inference/16x256x256-class.py
CHANGED
@@ -21,10 +21,10 @@ scheduler = dict(
|
|
21 |
num_sampling_steps=20,
|
22 |
cfg_scale=4.0,
|
23 |
)
|
24 |
-
dtype = "
|
25 |
|
26 |
# Others
|
27 |
batch_size = 2
|
28 |
seed = 42
|
29 |
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
-
save_dir = "./
|
|
|
21 |
num_sampling_steps=20,
|
22 |
cfg_scale=4.0,
|
23 |
)
|
24 |
+
dtype = "bf16"
|
25 |
|
26 |
# Others
|
27 |
batch_size = 2
|
28 |
seed = 42
|
29 |
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
+
save_dir = "./samples/samples/"
|
configs/latte/inference/16x256x256.py
CHANGED
@@ -22,10 +22,10 @@ scheduler = dict(
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
-
dtype = "
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
-
save_dir = "./
|
|
|
22 |
num_sampling_steps=20,
|
23 |
cfg_scale=4.0,
|
24 |
)
|
25 |
+
dtype = "bf16"
|
26 |
|
27 |
# Others
|
28 |
batch_size = 2
|
29 |
seed = 42
|
30 |
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./samples/samples/"
|
configs/latte/train/16x256x256.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
@@ -17,7 +17,7 @@ sp_size = 1
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
-
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
+
enable_flash_attn=True,
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
configs/opensora-v1-1/inference/sample-ref.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Condition
|
8 |
+
prompt_path = None
|
9 |
+
prompt = [
|
10 |
+
'Drone view of waves crashing against the rugged cliffs along Big Sur\'s garay point beach. {"reference_path": "assets/images/condition/cliff.png", "mask_strategy": "0"}',
|
11 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png","mask_strategy": "0"}',
|
12 |
+
'A car driving on the ocean.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4","mask_strategy": "0,0,-8,0,8"}',
|
13 |
+
'A snowy forest.{"reference_path": "https://cdn.pixabay.com/video/2021/04/25/72171-542991404_large.mp4","mask_strategy": "0,0,0,0,15,0.8"}',
|
14 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png;assets/images/condition/sunset2.png","mask_strategy": "0;0,1,0,-1,1"}',
|
15 |
+
'|0|a white jeep equipped with a roof rack driving on a dirt road in a coniferous forest.|2|a white jeep equipped with a roof rack driving on a dirt road in the desert.|4|a white jeep equipped with a roof rack driving on a dirt road in a mountain.|6|A white jeep equipped with a roof rack driving on a dirt road in a city.|8|a white jeep equipped with a roof rack driving on a dirt road on the surface of a river.|10|a white jeep equipped with a roof rack driving on a dirt road under the lake.|12|a white jeep equipped with a roof rack flying into the sky.|14|a white jeep equipped with a roof rack driving in the universe. Earth is the background.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4", "mask_strategy": "0,0,0,0,15"}',
|
16 |
+
]
|
17 |
+
|
18 |
+
loop = 2
|
19 |
+
condition_frame_length = 4
|
20 |
+
# (
|
21 |
+
# loop id, [the loop index of the condition image or video]
|
22 |
+
# reference id, [the index of the condition image or video in the reference_path]
|
23 |
+
# reference start, [the start frame of the condition image or video]
|
24 |
+
# target start, [the location to insert]
|
25 |
+
# length, [the number of frames to insert]
|
26 |
+
# edit_ratio [the edit rate of the condition image or video]
|
27 |
+
# )
|
28 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/config.md#advanced-inference-config for more details
|
29 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/commands.md#inference-with-open-sora-11 for more examples
|
30 |
+
|
31 |
+
# Define model
|
32 |
+
model = dict(
|
33 |
+
type="STDiT2-XL/2",
|
34 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
35 |
+
input_sq_size=512,
|
36 |
+
qk_norm=True,
|
37 |
+
qk_norm_legacy=True,
|
38 |
+
enable_flash_attn=True,
|
39 |
+
enable_layernorm_kernel=True,
|
40 |
+
)
|
41 |
+
vae = dict(
|
42 |
+
type="VideoAutoencoderKL",
|
43 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
44 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
45 |
+
micro_batch_size=4,
|
46 |
+
)
|
47 |
+
text_encoder = dict(
|
48 |
+
type="t5",
|
49 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
50 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
51 |
+
model_max_length=200,
|
52 |
+
)
|
53 |
+
scheduler = dict(
|
54 |
+
type="iddpm",
|
55 |
+
num_sampling_steps=100,
|
56 |
+
cfg_scale=7.0,
|
57 |
+
cfg_channel=3, # or None
|
58 |
+
)
|
59 |
+
dtype = "bf16"
|
60 |
+
|
61 |
+
# Others
|
62 |
+
batch_size = 1
|
63 |
+
seed = 42
|
64 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/inference/sample.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
fps = 24
|
4 |
+
image_size = (240, 426)
|
5 |
+
multi_resolution = "STDiT2"
|
6 |
+
|
7 |
+
# Define model
|
8 |
+
model = dict(
|
9 |
+
type="STDiT2-XL/2",
|
10 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
11 |
+
input_sq_size=512,
|
12 |
+
qk_norm=True,
|
13 |
+
qk_norm_legacy=True,
|
14 |
+
enable_flash_attn=True,
|
15 |
+
enable_layernorm_kernel=True,
|
16 |
+
)
|
17 |
+
vae = dict(
|
18 |
+
type="VideoAutoencoderKL",
|
19 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
20 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
21 |
+
micro_batch_size=4,
|
22 |
+
)
|
23 |
+
text_encoder = dict(
|
24 |
+
type="t5",
|
25 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
26 |
+
cache_dir=None, # "/mnt/hdd/cached_models",
|
27 |
+
model_max_length=200,
|
28 |
+
)
|
29 |
+
scheduler = dict(
|
30 |
+
type="iddpm",
|
31 |
+
num_sampling_steps=100,
|
32 |
+
cfg_scale=7.0,
|
33 |
+
cfg_channel=3, # or None
|
34 |
+
)
|
35 |
+
dtype = "bf16"
|
36 |
+
|
37 |
+
# Condition
|
38 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
39 |
+
prompt = None # prompt has higher priority than prompt_path
|
40 |
+
|
41 |
+
# Others
|
42 |
+
batch_size = 1
|
43 |
+
seed = 42
|
44 |
+
save_dir = "./samples/samples/"
|
configs/opensora-v1-1/train/benchmark.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this file is only for batch size search and is not used for training
|
2 |
+
|
3 |
+
# Define dataset
|
4 |
+
dataset = dict(
|
5 |
+
type="VariableVideoTextDataset",
|
6 |
+
data_path=None,
|
7 |
+
num_frames=None,
|
8 |
+
frame_interval=3,
|
9 |
+
image_size=(None, None),
|
10 |
+
transform_name="resize_crop",
|
11 |
+
)
|
12 |
+
|
13 |
+
# bucket config format:
|
14 |
+
# 1. { resolution: {num_frames: (prob, batch_size)} }, in this case batch_size is ignored when searching
|
15 |
+
# 2. { resolution: {num_frames: (prob, (max_batch_size, ))} }, batch_size is searched in the range [batch_size_start, max_batch_size), batch_size_start is configured via CLI
|
16 |
+
# 3. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size)
|
17 |
+
# 4. { resolution: {num_frames: (prob, (min_batch_size, max_batch_size, step_size))} }, batch_size is searched in the range [min_batch_size, max_batch_size) with step_size (grid search)
|
18 |
+
# 5. { resolution: {num_frames: (0.0, None)} }, this bucket will not be used
|
19 |
+
|
20 |
+
bucket_config = {
|
21 |
+
# == manual search ==
|
22 |
+
# "240p": {128: (1.0, 2)}, # 4.28s/it
|
23 |
+
# "240p": {64: (1.0, 4)},
|
24 |
+
# "240p": {32: (1.0, 8)}, # 4.6s/it
|
25 |
+
# "240p": {16: (1.0, 16)}, # 4.6s/it
|
26 |
+
# "480p": {16: (1.0, 4)}, # 4.6s/it
|
27 |
+
# "720p": {16: (1.0, 2)}, # 5.89s/it
|
28 |
+
# "256": {1: (1.0, 256)}, # 4.5s/it
|
29 |
+
# "512": {1: (1.0, 96)}, # 4.7s/it
|
30 |
+
# "512": {1: (1.0, 128)}, # 6.3s/it
|
31 |
+
# "480p": {1: (1.0, 50)}, # 4.0s/it
|
32 |
+
# "1024": {1: (1.0, 32)}, # 6.8s/it
|
33 |
+
# "1024": {1: (1.0, 20)}, # 4.3s/it
|
34 |
+
# "1080p": {1: (1.0, 16)}, # 8.6s/it
|
35 |
+
# "1080p": {1: (1.0, 8)}, # 4.4s/it
|
36 |
+
# == stage 2 ==
|
37 |
+
# "240p": {
|
38 |
+
# 16: (1.0, (2, 32)),
|
39 |
+
# 32: (1.0, (2, 16)),
|
40 |
+
# 64: (1.0, (2, 8)),
|
41 |
+
# 128: (1.0, (2, 6)),
|
42 |
+
# },
|
43 |
+
# "256": {1: (1.0, (128, 300))},
|
44 |
+
# "512": {1: (0.5, (64, 128))},
|
45 |
+
# "480p": {1: (0.4, (32, 128)), 16: (0.4, (2, 32)), 32: (0.0, None)},
|
46 |
+
# "720p": {16: (0.1, (2, 16)), 32: (0.0, None)}, # No examples now
|
47 |
+
# "1024": {1: (0.3, (8, 64))},
|
48 |
+
# "1080p": {1: (0.3, (2, 32))},
|
49 |
+
# == stage 3 ==
|
50 |
+
"720p": {1: (20, 40), 32: (0.5, (2, 4)), 64: (0.5, (1, 1))},
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
# Define acceleration
|
55 |
+
num_workers = 4
|
56 |
+
num_bucket_build_workers = 16
|
57 |
+
dtype = "bf16"
|
58 |
+
grad_checkpoint = True
|
59 |
+
plugin = "zero2"
|
60 |
+
sp_size = 1
|
61 |
+
|
62 |
+
# Define model
|
63 |
+
model = dict(
|
64 |
+
type="STDiT2-XL/2",
|
65 |
+
from_pretrained=None,
|
66 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
+
qk_norm=True,
|
68 |
+
qk_norm_legacy=True,
|
69 |
+
enable_flash_attn=True,
|
70 |
+
enable_layernorm_kernel=True,
|
71 |
+
)
|
72 |
+
vae = dict(
|
73 |
+
type="VideoAutoencoderKL",
|
74 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
75 |
+
micro_batch_size=4,
|
76 |
+
local_files_only=True,
|
77 |
+
)
|
78 |
+
text_encoder = dict(
|
79 |
+
type="t5",
|
80 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
81 |
+
model_max_length=200,
|
82 |
+
shardformer=True,
|
83 |
+
local_files_only=True,
|
84 |
+
)
|
85 |
+
scheduler = dict(
|
86 |
+
type="iddpm",
|
87 |
+
timestep_respacing="",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Others
|
91 |
+
seed = 42
|
92 |
+
outputs = "outputs"
|
93 |
+
wandb = False
|
94 |
+
|
95 |
+
epochs = 1000
|
96 |
+
log_every = 10
|
97 |
+
ckpt_every = 1000
|
98 |
+
load = None
|
99 |
+
|
100 |
+
batch_size = None
|
101 |
+
lr = 2e-5
|
102 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/image.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"256": {1: (1.0, 256)},
|
12 |
+
"512": {1: (1.0, 80)},
|
13 |
+
"480p": {1: (1.0, 52)},
|
14 |
+
"1024": {1: (1.0, 20)},
|
15 |
+
"1080p": {1: (1.0, 8)},
|
16 |
+
}
|
17 |
+
|
18 |
+
# Define acceleration
|
19 |
+
num_workers = 4
|
20 |
+
num_bucket_build_workers = 16
|
21 |
+
dtype = "bf16"
|
22 |
+
grad_checkpoint = True
|
23 |
+
plugin = "zero2"
|
24 |
+
sp_size = 1
|
25 |
+
|
26 |
+
# Define model
|
27 |
+
model = dict(
|
28 |
+
type="STDiT2-XL/2",
|
29 |
+
from_pretrained=None,
|
30 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
+
qk_norm=True,
|
32 |
+
qk_norm_legacy=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
+
enable_layernorm_kernel=True,
|
35 |
+
)
|
36 |
+
vae = dict(
|
37 |
+
type="VideoAutoencoderKL",
|
38 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
39 |
+
micro_batch_size=4,
|
40 |
+
local_files_only=True,
|
41 |
+
)
|
42 |
+
text_encoder = dict(
|
43 |
+
type="t5",
|
44 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
45 |
+
model_max_length=200,
|
46 |
+
shardformer=True,
|
47 |
+
local_files_only=True,
|
48 |
+
)
|
49 |
+
scheduler = dict(
|
50 |
+
type="iddpm",
|
51 |
+
timestep_respacing="",
|
52 |
+
)
|
53 |
+
|
54 |
+
# Others
|
55 |
+
seed = 42
|
56 |
+
outputs = "outputs"
|
57 |
+
wandb = False
|
58 |
+
|
59 |
+
epochs = 1000
|
60 |
+
log_every = 10
|
61 |
+
ckpt_every = 500
|
62 |
+
load = None
|
63 |
+
|
64 |
+
batch_size = 10 # only for logging
|
65 |
+
lr = 2e-5
|
66 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/image_rflow.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
# dataset = dict(
|
3 |
+
# type="VariableVideoTextDataset",
|
4 |
+
# data_path=None,
|
5 |
+
# num_frames=None,
|
6 |
+
# frame_interval=3,
|
7 |
+
# image_size=(None, None),
|
8 |
+
# transform_name="resize_crop",
|
9 |
+
# )
|
10 |
+
dataset = dict(
|
11 |
+
type="VideoTextDataset",
|
12 |
+
data_path=None,
|
13 |
+
num_frames=1,
|
14 |
+
frame_interval=1,
|
15 |
+
image_size=(256, 256),
|
16 |
+
transform_name="center",
|
17 |
+
)
|
18 |
+
bucket_config = { # 6s/it
|
19 |
+
"256": {1: (1.0, 256)},
|
20 |
+
"512": {1: (1.0, 80)},
|
21 |
+
"480p": {1: (1.0, 52)},
|
22 |
+
"1024": {1: (1.0, 20)},
|
23 |
+
"1080p": {1: (1.0, 8)},
|
24 |
+
}
|
25 |
+
|
26 |
+
# Define acceleration
|
27 |
+
num_workers = 16
|
28 |
+
dtype = "bf16"
|
29 |
+
grad_checkpoint = True
|
30 |
+
plugin = "zero2"
|
31 |
+
sp_size = 1
|
32 |
+
|
33 |
+
# Define model
|
34 |
+
# model = dict(
|
35 |
+
# type="DiT-XL/2",
|
36 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
37 |
+
# # input_sq_size=512, # pretrained model is trained on 512x512
|
38 |
+
# enable_flash_attn=True,
|
39 |
+
# enable_layernorm_kernel=True,
|
40 |
+
# )
|
41 |
+
model = dict(
|
42 |
+
type="PixArt-XL/2",
|
43 |
+
space_scale=1.0,
|
44 |
+
time_scale=1.0,
|
45 |
+
no_temporal_pos_emb=True,
|
46 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
47 |
+
enable_flash_attn=True,
|
48 |
+
enable_layernorm_kernel=True,
|
49 |
+
)
|
50 |
+
# model = dict(
|
51 |
+
# type="DiT-XL/2",
|
52 |
+
# # space_scale=1.0,
|
53 |
+
# # time_scale=1.0,
|
54 |
+
# no_temporal_pos_emb=True,
|
55 |
+
# # from_pretrained="PixArt-XL-2-512x512.pth",
|
56 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
57 |
+
# enable_flash_attn=True,
|
58 |
+
# enable_layernorm_kernel=True,
|
59 |
+
# )
|
60 |
+
vae = dict(
|
61 |
+
type="VideoAutoencoderKL",
|
62 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
63 |
+
micro_batch_size=4,
|
64 |
+
)
|
65 |
+
text_encoder = dict(
|
66 |
+
type="t5",
|
67 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
68 |
+
model_max_length=200,
|
69 |
+
shardformer=True,
|
70 |
+
)
|
71 |
+
scheduler = dict(
|
72 |
+
type="rflow",
|
73 |
+
# timestep_respacing="",
|
74 |
+
)
|
75 |
+
|
76 |
+
# Others
|
77 |
+
seed = 42
|
78 |
+
outputs = "outputs"
|
79 |
+
wandb = False
|
80 |
+
|
81 |
+
epochs = 10
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 500
|
84 |
+
load = None
|
85 |
+
|
86 |
+
batch_size = 100 # only for logging
|
87 |
+
lr = 2e-5
|
88 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage1.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
# IMG: 1024 (20%) 512 (30%) 256 (50%) drop (50%)
|
11 |
+
bucket_config = { # 1s/it
|
12 |
+
"144p": {1: (0.5, 48), 16: (1.0, 6), 32: (1.0, 3), 96: (1.0, 1)},
|
13 |
+
"256": {1: (0.5, 24), 16: (0.5, 3), 48: (0.5, 1), 64: (0.0, None)},
|
14 |
+
"240p": {16: (0.3, 2), 32: (0.3, 1), 64: (0.0, None)},
|
15 |
+
"512": {1: (0.4, 12)},
|
16 |
+
"1024": {1: (0.3, 3)},
|
17 |
+
}
|
18 |
+
mask_ratios = {
|
19 |
+
"identity": 0.75,
|
20 |
+
"quarter_random": 0.025,
|
21 |
+
"quarter_head": 0.025,
|
22 |
+
"quarter_tail": 0.025,
|
23 |
+
"quarter_head_tail": 0.05,
|
24 |
+
"image_random": 0.025,
|
25 |
+
"image_head": 0.025,
|
26 |
+
"image_tail": 0.025,
|
27 |
+
"image_head_tail": 0.05,
|
28 |
+
}
|
29 |
+
|
30 |
+
# Define acceleration
|
31 |
+
num_workers = 8
|
32 |
+
num_bucket_build_workers = 16
|
33 |
+
dtype = "bf16"
|
34 |
+
grad_checkpoint = False
|
35 |
+
plugin = "zero2"
|
36 |
+
sp_size = 1
|
37 |
+
|
38 |
+
# Define model
|
39 |
+
model = dict(
|
40 |
+
type="STDiT2-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
+
qk_norm=True,
|
44 |
+
qk_norm_legacy=True,
|
45 |
+
enable_flash_attn=True,
|
46 |
+
enable_layernorm_kernel=True,
|
47 |
+
)
|
48 |
+
vae = dict(
|
49 |
+
type="VideoAutoencoderKL",
|
50 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
51 |
+
micro_batch_size=4,
|
52 |
+
local_files_only=True,
|
53 |
+
)
|
54 |
+
text_encoder = dict(
|
55 |
+
type="t5",
|
56 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
57 |
+
model_max_length=200,
|
58 |
+
shardformer=True,
|
59 |
+
local_files_only=True,
|
60 |
+
)
|
61 |
+
scheduler = dict(
|
62 |
+
type="iddpm",
|
63 |
+
timestep_respacing="",
|
64 |
+
)
|
65 |
+
|
66 |
+
# Others
|
67 |
+
seed = 42
|
68 |
+
outputs = "outputs"
|
69 |
+
wandb = False
|
70 |
+
|
71 |
+
epochs = 1000
|
72 |
+
log_every = 10
|
73 |
+
ckpt_every = 500
|
74 |
+
load = None
|
75 |
+
|
76 |
+
batch_size = None
|
77 |
+
lr = 2e-5
|
78 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage2.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 7s/it
|
11 |
+
"144p": {1: (1.0, 48), 16: (1.0, 17), 32: (1.0, 9), 64: (1.0, 4), 128: (1.0, 1)},
|
12 |
+
"256": {1: (0.8, 254), 16: (0.5, 17), 32: (0.5, 9), 64: (0.5, 4), 128: (0.5, 1)},
|
13 |
+
"240p": {1: (0.1, 20), 16: (0.9, 17), 32: (0.8, 9), 64: (0.8, 4), 128: (0.8, 2)},
|
14 |
+
"512": {1: (0.5, 86), 16: (0.2, 4), 32: (0.2, 2), 64: (0.2, 1), 128: (0.0, None)},
|
15 |
+
"480p": {1: (0.4, 54), 16: (0.4, 4), 32: (0.0, None)},
|
16 |
+
"720p": {1: (0.1, 20), 16: (0.1, 2), 32: (0.0, None)},
|
17 |
+
"1024": {1: (0.3, 20)},
|
18 |
+
"1080p": {1: (0.4, 8)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
+
enable_layernorm_kernel=True,
|
49 |
+
)
|
50 |
+
vae = dict(
|
51 |
+
type="VideoAutoencoderKL",
|
52 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
53 |
+
micro_batch_size=4,
|
54 |
+
local_files_only=True,
|
55 |
+
)
|
56 |
+
text_encoder = dict(
|
57 |
+
type="t5",
|
58 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
59 |
+
model_max_length=200,
|
60 |
+
shardformer=True,
|
61 |
+
local_files_only=True,
|
62 |
+
)
|
63 |
+
scheduler = dict(
|
64 |
+
type="iddpm",
|
65 |
+
timestep_respacing="",
|
66 |
+
)
|
67 |
+
|
68 |
+
# Others
|
69 |
+
seed = 42
|
70 |
+
outputs = "outputs"
|
71 |
+
wandb = False
|
72 |
+
|
73 |
+
epochs = 1000
|
74 |
+
log_every = 10
|
75 |
+
ckpt_every = 500
|
76 |
+
load = None
|
77 |
+
|
78 |
+
batch_size = None
|
79 |
+
lr = 2e-5
|
80 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage3.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 13s/it
|
11 |
+
"144p": {1: (1.0, 200), 16: (1.0, 36), 32: (1.0, 18), 64: (1.0, 9), 128: (1.0, 4)},
|
12 |
+
"256": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 11), 64: (0.5, 6), 128: (0.8, 4)},
|
13 |
+
"240p": {1: (0.8, 200), 16: (0.5, 22), 32: (0.5, 10), 64: (0.5, 6), 128: (0.5, 3)},
|
14 |
+
"360p": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.5, 1)},
|
15 |
+
"512": {1: (0.5, 120), 16: (0.5, 9), 32: (0.5, 4), 64: (0.5, 2), 128: (0.8, 1)},
|
16 |
+
"480p": {1: (0.4, 80), 16: (0.6, 6), 32: (0.6, 3), 64: (0.6, 1), 128: (0.0, None)},
|
17 |
+
"720p": {1: (0.4, 40), 16: (0.6, 3), 32: (0.6, 1), 96: (0.0, None)},
|
18 |
+
"1024": {1: (0.3, 40)},
|
19 |
+
}
|
20 |
+
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Define acceleration
|
33 |
+
num_workers = 8
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
grad_checkpoint = True
|
37 |
+
plugin = "zero2"
|
38 |
+
sp_size = 1
|
39 |
+
|
40 |
+
# Define model
|
41 |
+
model = dict(
|
42 |
+
type="STDiT2-XL/2",
|
43 |
+
from_pretrained=None,
|
44 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
+
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
+
enable_layernorm_kernel=True,
|
49 |
+
)
|
50 |
+
vae = dict(
|
51 |
+
type="VideoAutoencoderKL",
|
52 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
53 |
+
micro_batch_size=4,
|
54 |
+
local_files_only=True,
|
55 |
+
)
|
56 |
+
text_encoder = dict(
|
57 |
+
type="t5",
|
58 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
59 |
+
model_max_length=200,
|
60 |
+
shardformer=True,
|
61 |
+
local_files_only=True,
|
62 |
+
)
|
63 |
+
scheduler = dict(
|
64 |
+
type="iddpm",
|
65 |
+
timestep_respacing="",
|
66 |
+
)
|
67 |
+
|
68 |
+
# Others
|
69 |
+
seed = 42
|
70 |
+
outputs = "outputs"
|
71 |
+
wandb = False
|
72 |
+
|
73 |
+
epochs = 1000
|
74 |
+
log_every = 10
|
75 |
+
ckpt_every = 500
|
76 |
+
load = None
|
77 |
+
|
78 |
+
batch_size = None
|
79 |
+
lr = 2e-5
|
80 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/video.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=None,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(None, None),
|
8 |
+
transform_name="resize_crop",
|
9 |
+
)
|
10 |
+
bucket_config = { # 6s/it
|
11 |
+
"240p": {16: (1.0, 16), 32: (1.0, 8), 64: (1.0, 4), 128: (1.0, 2)},
|
12 |
+
"256": {1: (1.0, 256)},
|
13 |
+
"512": {1: (0.5, 80)},
|
14 |
+
"480p": {1: (0.4, 52), 16: (0.4, 4), 32: (0.0, None)},
|
15 |
+
"720p": {16: (0.1, 2), 32: (0.0, None)}, # No examples now
|
16 |
+
"1024": {1: (0.3, 20)},
|
17 |
+
"1080p": {1: (0.3, 8)},
|
18 |
+
}
|
19 |
+
|
20 |
+
# Define acceleration
|
21 |
+
num_workers = 4
|
22 |
+
num_bucket_build_workers = 16
|
23 |
+
dtype = "bf16"
|
24 |
+
grad_checkpoint = True
|
25 |
+
plugin = "zero2"
|
26 |
+
sp_size = 1
|
27 |
+
|
28 |
+
# Define model
|
29 |
+
model = dict(
|
30 |
+
type="STDiT2-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
+
qk_norm=True,
|
34 |
+
qk_norm_legacy=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
+
enable_layernorm_kernel=True,
|
37 |
+
)
|
38 |
+
vae = dict(
|
39 |
+
type="VideoAutoencoderKL",
|
40 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
41 |
+
micro_batch_size=4,
|
42 |
+
local_files_only=True,
|
43 |
+
)
|
44 |
+
text_encoder = dict(
|
45 |
+
type="t5",
|
46 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
47 |
+
model_max_length=200,
|
48 |
+
shardformer=True,
|
49 |
+
local_files_only=True,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="iddpm",
|
53 |
+
timestep_respacing="",
|
54 |
+
)
|
55 |
+
|
56 |
+
# Others
|
57 |
+
seed = 42
|
58 |
+
outputs = "outputs"
|
59 |
+
wandb = False
|
60 |
+
|
61 |
+
epochs = 1000
|
62 |
+
log_every = 10
|
63 |
+
ckpt_every = 500
|
64 |
+
load = None
|
65 |
+
|
66 |
+
batch_size = 10 # only for logging
|
67 |
+
lr = 2e-5
|
68 |
+
grad_clip = 1.0
|
configs/opensora-v1-2/inference/sample.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
resolution = "240p"
|
2 |
+
aspect_ratio = "9:16"
|
3 |
+
num_frames = 51
|
4 |
+
fps = 24
|
5 |
+
frame_interval = 1
|
6 |
+
save_fps = 24
|
7 |
+
|
8 |
+
save_dir = "./samples/samples/"
|
9 |
+
seed = 42
|
10 |
+
batch_size = 1
|
11 |
+
multi_resolution = "STDiT2"
|
12 |
+
dtype = "bf16"
|
13 |
+
condition_frame_length = 5
|
14 |
+
align = 5
|
15 |
+
|
16 |
+
model = dict(
|
17 |
+
type="STDiT3-XL/2",
|
18 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v3",
|
19 |
+
qk_norm=True,
|
20 |
+
enable_flash_attn=True,
|
21 |
+
enable_layernorm_kernel=True,
|
22 |
+
)
|
23 |
+
vae = dict(
|
24 |
+
type="OpenSoraVAE_V1_2",
|
25 |
+
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
|
26 |
+
micro_frame_size=17,
|
27 |
+
micro_batch_size=4,
|
28 |
+
)
|
29 |
+
text_encoder = dict(
|
30 |
+
type="t5",
|
31 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
32 |
+
model_max_length=300,
|
33 |
+
)
|
34 |
+
scheduler = dict(
|
35 |
+
type="rflow",
|
36 |
+
use_timestep_transform=True,
|
37 |
+
num_sampling_steps=30,
|
38 |
+
cfg_scale=7.0,
|
39 |
+
)
|
40 |
+
|
41 |
+
aes = 6.5
|
42 |
+
flow = None
|
configs/opensora-v1-2/misc/bs.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# == Config 1: Webvid ==
|
8 |
+
# base: (512, 408), 12s/it
|
9 |
+
grad_checkpoint = True
|
10 |
+
base = ("512", "408")
|
11 |
+
base_step_time = 12
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {
|
14 |
+
1: (475, 0),
|
15 |
+
51: (51, 0),
|
16 |
+
102: (27, 0),
|
17 |
+
204: (13, 0),
|
18 |
+
408: (6, 0),
|
19 |
+
},
|
20 |
+
# ---
|
21 |
+
"240p": {
|
22 |
+
1: (297, 200), # 8.25
|
23 |
+
51: (20, 0),
|
24 |
+
102: (10, 0),
|
25 |
+
204: (5, 0),
|
26 |
+
408: (2, 0),
|
27 |
+
},
|
28 |
+
# ---
|
29 |
+
"512": {
|
30 |
+
1: (141, 0),
|
31 |
+
51: (8, 0),
|
32 |
+
102: (4, 0),
|
33 |
+
204: (2, 0),
|
34 |
+
408: (1, 0),
|
35 |
+
},
|
36 |
+
# ---
|
37 |
+
"480p": {
|
38 |
+
1: (89, 0),
|
39 |
+
51: (5, 0),
|
40 |
+
102: (2, 0),
|
41 |
+
204: (1, 0),
|
42 |
+
},
|
43 |
+
# ---
|
44 |
+
"1024": {
|
45 |
+
1: (36, 0),
|
46 |
+
51: (1, 0),
|
47 |
+
},
|
48 |
+
# ---
|
49 |
+
"1080p": {1: (5, 0)},
|
50 |
+
# ---
|
51 |
+
"2048": {1: (5, 0)},
|
52 |
+
}
|
53 |
+
|
54 |
+
# == Config 1 ==
|
55 |
+
# base: (512, 408), 16s/it
|
56 |
+
|
57 |
+
# Acceleration settings
|
58 |
+
num_workers = 8
|
59 |
+
num_bucket_build_workers = 16
|
60 |
+
dtype = "bf16"
|
61 |
+
plugin = "zero2"
|
62 |
+
|
63 |
+
# Model settings
|
64 |
+
model = dict(
|
65 |
+
type="STDiT3-XL/2",
|
66 |
+
from_pretrained=None,
|
67 |
+
qk_norm=True,
|
68 |
+
enable_flash_attn=True,
|
69 |
+
enable_layernorm_kernel=True,
|
70 |
+
)
|
71 |
+
vae = dict(
|
72 |
+
type="OpenSoraVAE_V1_2",
|
73 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
74 |
+
micro_frame_size=17,
|
75 |
+
micro_batch_size=4,
|
76 |
+
)
|
77 |
+
text_encoder = dict(
|
78 |
+
type="t5",
|
79 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
80 |
+
model_max_length=300,
|
81 |
+
shardformer=True,
|
82 |
+
local_files_only=True,
|
83 |
+
)
|
84 |
+
scheduler = dict(
|
85 |
+
type="rflow",
|
86 |
+
use_timestep_transform=True,
|
87 |
+
sample_method="logit-normal",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Mask settings
|
91 |
+
mask_ratios = {
|
92 |
+
"random": 0.2,
|
93 |
+
"intepolate": 0.01,
|
94 |
+
"quarter_random": 0.01,
|
95 |
+
"quarter_head": 0.01,
|
96 |
+
"quarter_tail": 0.01,
|
97 |
+
"quarter_head_tail": 0.01,
|
98 |
+
"image_random": 0.05,
|
99 |
+
"image_head": 0.1,
|
100 |
+
"image_tail": 0.05,
|
101 |
+
"image_head_tail": 0.05,
|
102 |
+
}
|
103 |
+
|
104 |
+
# Log settings
|
105 |
+
seed = 42
|
106 |
+
outputs = "outputs"
|
107 |
+
wandb = False
|
108 |
+
epochs = 1000
|
109 |
+
log_every = 10
|
110 |
+
ckpt_every = 500
|
111 |
+
|
112 |
+
# optimization settings
|
113 |
+
load = None
|
114 |
+
grad_clip = 1.0
|
115 |
+
lr = 2e-4
|
116 |
+
ema_decay = 0.99
|
117 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/misc/eval_loss.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_workers = 8
|
2 |
+
dtype = "bf16"
|
3 |
+
seed = 42
|
4 |
+
num_eval_timesteps = 10
|
5 |
+
|
6 |
+
# Dataset settings
|
7 |
+
dataset = dict(
|
8 |
+
type="VariableVideoTextDataset",
|
9 |
+
transform_name="resize_crop",
|
10 |
+
)
|
11 |
+
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {1: (None, 100), 51: (None, 30), 102: (None, 20), 204: (None, 8), 408: (None, 4)},
|
14 |
+
# ---
|
15 |
+
"240p": {1: (None, 100), 51: (None, 24), 102: (None, 12), 204: (None, 4), 408: (None, 2)},
|
16 |
+
# ---
|
17 |
+
"360p": {1: (None, 60), 51: (None, 12), 102: (None, 6), 204: (None, 2), 408: (None, 1)},
|
18 |
+
# ---
|
19 |
+
"480p": {1: (None, 40), 51: (None, 6), 102: (None, 3), 204: (None, 1)},
|
20 |
+
# ---
|
21 |
+
"720p": {1: (None, 20), 51: (None, 2), 102: (None, 1)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (None, 10)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (None, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
# Model settings
|
29 |
+
model = dict(
|
30 |
+
type="STDiT3-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
qk_norm=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
+
enable_layernorm_kernel=True,
|
35 |
+
)
|
36 |
+
vae = dict(
|
37 |
+
type="OpenSoraVAE_V1_2",
|
38 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
39 |
+
micro_frame_size=17,
|
40 |
+
micro_batch_size=4,
|
41 |
+
local_files_only=True,
|
42 |
+
)
|
43 |
+
text_encoder = dict(
|
44 |
+
type="t5",
|
45 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
46 |
+
model_max_length=300,
|
47 |
+
local_files_only=True,
|
48 |
+
)
|
49 |
+
scheduler = dict(type="rflow")
|
configs/opensora-v1-2/misc/extract.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
15 |
+
"512": {1: (0.1, 141)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.1, 89)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.05, 36)},
|
20 |
+
"1024": {1: (0.05, 36)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.1, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
# Acceleration settings
|
28 |
+
num_workers = 8
|
29 |
+
num_bucket_build_workers = 16
|
30 |
+
dtype = "bf16"
|
31 |
+
seed = 42
|
32 |
+
outputs = "outputs"
|
33 |
+
wandb = False
|
34 |
+
|
35 |
+
|
36 |
+
# Model settings
|
37 |
+
model = dict(
|
38 |
+
type="STDiT3-XL/2",
|
39 |
+
from_pretrained="/mnt/nfs-206/zangwei/opensora/outputs/1091-STDiT3-XL-2/epoch0-global_step8500",
|
40 |
+
qk_norm=True,
|
41 |
+
enable_flash_attn=True,
|
42 |
+
enable_layernorm_kernel=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=32,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
# feature extraction settings
|
59 |
+
save_text_features = True
|
60 |
+
save_compressed_text_features = True
|
61 |
+
bin_size = 250 # 1GB, 4195 bins
|
62 |
+
log_time = False
|
configs/opensora-v1-2/misc/feat.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
dummy_text_feature=True,
|
6 |
+
)
|
7 |
+
|
8 |
+
# webvid
|
9 |
+
bucket_config = { # 12s/it
|
10 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
11 |
+
# ---
|
12 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
13 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
14 |
+
# ---
|
15 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
16 |
+
"512": {1: (0.1, 141)},
|
17 |
+
# ---
|
18 |
+
"480p": {1: (0.1, 89)},
|
19 |
+
# ---
|
20 |
+
"720p": {1: (0.05, 36)},
|
21 |
+
"1024": {1: (0.05, 36)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (0.1, 5)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (0.1, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
grad_checkpoint = True
|
29 |
+
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Acceleration settings
|
33 |
+
num_workers = 0
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
plugin = "zero2"
|
37 |
+
|
38 |
+
# Model settings
|
39 |
+
model = dict(
|
40 |
+
type="STDiT3-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
qk_norm=True,
|
43 |
+
enable_flash_attn=True,
|
44 |
+
enable_layernorm_kernel=True,
|
45 |
+
freeze_y_embedder=True,
|
46 |
+
skip_y_embedder=True,
|
47 |
+
)
|
48 |
+
vae = dict(
|
49 |
+
type="OpenSoraVAE_V1_2",
|
50 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
51 |
+
micro_frame_size=17,
|
52 |
+
micro_batch_size=4,
|
53 |
+
)
|
54 |
+
text_encoder = dict(
|
55 |
+
type="t5",
|
56 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
57 |
+
model_max_length=300,
|
58 |
+
shardformer=True,
|
59 |
+
local_files_only=True,
|
60 |
+
)
|
61 |
+
scheduler = dict(
|
62 |
+
type="rflow",
|
63 |
+
use_timestep_transform=True,
|
64 |
+
sample_method="logit-normal",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Mask settings
|
68 |
+
mask_ratios = {
|
69 |
+
"random": 0.2,
|
70 |
+
"intepolate": 0.01,
|
71 |
+
"quarter_random": 0.01,
|
72 |
+
"quarter_head": 0.01,
|
73 |
+
"quarter_tail": 0.01,
|
74 |
+
"quarter_head_tail": 0.01,
|
75 |
+
"image_random": 0.05,
|
76 |
+
"image_head": 0.1,
|
77 |
+
"image_tail": 0.05,
|
78 |
+
"image_head_tail": 0.05,
|
79 |
+
}
|
80 |
+
|
81 |
+
# Log settings
|
82 |
+
seed = 42
|
83 |
+
outputs = "outputs"
|
84 |
+
wandb = False
|
85 |
+
epochs = 1000
|
86 |
+
log_every = 10
|
87 |
+
ckpt_every = 1
|
88 |
+
|
89 |
+
# optimization settings
|
90 |
+
load = None
|
91 |
+
grad_clip = 1.0
|
92 |
+
lr = 2e-4
|
93 |
+
ema_decay = 0.99
|
94 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/adapt.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
bucket_config = { # 2s/it
|
7 |
+
"144p": {1: (0.5, 48), 34: (1.0, 2), 51: (1.0, 4), 102: (1.0, 2), 204: (1.0, 1)},
|
8 |
+
# ---
|
9 |
+
"256": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
10 |
+
"240p": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
11 |
+
# ---
|
12 |
+
"360p": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
13 |
+
"512": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
14 |
+
# ---
|
15 |
+
"480p": {1: (0.2, 4), 17: (0.3, 1), 68: (0.0, None)},
|
16 |
+
# ---
|
17 |
+
"720p": {1: (0.1, 2)},
|
18 |
+
"1024": {1: (0.1, 2)},
|
19 |
+
# ---
|
20 |
+
"1080p": {1: (0.1, 1)},
|
21 |
+
}
|
22 |
+
grad_checkpoint = False
|
23 |
+
|
24 |
+
# Acceleration settings
|
25 |
+
num_workers = 8
|
26 |
+
num_bucket_build_workers = 16
|
27 |
+
dtype = "bf16"
|
28 |
+
plugin = "zero2"
|
29 |
+
|
30 |
+
# Model settings
|
31 |
+
model = dict(
|
32 |
+
type="STDiT3-XL/2",
|
33 |
+
from_pretrained=None,
|
34 |
+
qk_norm=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
+
enable_layernorm_kernel=True,
|
37 |
+
)
|
38 |
+
vae = dict(
|
39 |
+
type="OpenSoraVAE_V1_2",
|
40 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
41 |
+
micro_frame_size=17,
|
42 |
+
micro_batch_size=4,
|
43 |
+
)
|
44 |
+
text_encoder = dict(
|
45 |
+
type="t5",
|
46 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
47 |
+
model_max_length=300,
|
48 |
+
shardformer=True,
|
49 |
+
local_files_only=True,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="rflow",
|
53 |
+
use_timestep_transform=True,
|
54 |
+
sample_method="logit-normal",
|
55 |
+
)
|
56 |
+
|
57 |
+
# Mask settings
|
58 |
+
mask_ratios = {
|
59 |
+
"random": 0.2,
|
60 |
+
"intepolate": 0.01,
|
61 |
+
"quarter_random": 0.01,
|
62 |
+
"quarter_head": 0.01,
|
63 |
+
"quarter_tail": 0.01,
|
64 |
+
"quarter_head_tail": 0.01,
|
65 |
+
"image_random": 0.05,
|
66 |
+
"image_head": 0.1,
|
67 |
+
"image_tail": 0.05,
|
68 |
+
"image_head_tail": 0.05,
|
69 |
+
}
|
70 |
+
|
71 |
+
# Log settings
|
72 |
+
seed = 42
|
73 |
+
outputs = "outputs"
|
74 |
+
wandb = False
|
75 |
+
epochs = 1000
|
76 |
+
log_every = 10
|
77 |
+
ckpt_every = 500
|
78 |
+
|
79 |
+
# optimization settings
|
80 |
+
load = None
|
81 |
+
grad_clip = 1.0
|
82 |
+
lr = 1e-4
|
83 |
+
ema_decay = 0.99
|
84 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage1.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# backup
|
8 |
+
# bucket_config = { # 20s/it
|
9 |
+
# "144p": {1: (1.0, 100), 51: (1.0, 30), 102: (1.0, 20), 204: (1.0, 8), 408: (1.0, 4)},
|
10 |
+
# # ---
|
11 |
+
# "256": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
12 |
+
# "240p": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
13 |
+
# # ---
|
14 |
+
# "360p": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
15 |
+
# "512": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
16 |
+
# # ---
|
17 |
+
# "480p": {1: (0.5, 40), 51: (0.3, 6), 102: (0.3, 3), 204: (0.3, 1), 408: (0.0, None)},
|
18 |
+
# # ---
|
19 |
+
# "720p": {1: (0.2, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
20 |
+
# "1024": {1: (0.1, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
21 |
+
# # ---
|
22 |
+
# "1080p": {1: (0.1, 10)},
|
23 |
+
# # ---
|
24 |
+
# "2048": {1: (0.1, 5)},
|
25 |
+
# }
|
26 |
+
|
27 |
+
# webvid
|
28 |
+
bucket_config = { # 12s/it
|
29 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
30 |
+
# ---
|
31 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
32 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
33 |
+
# ---
|
34 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
35 |
+
"512": {1: (0.1, 141)},
|
36 |
+
# ---
|
37 |
+
"480p": {1: (0.1, 89)},
|
38 |
+
# ---
|
39 |
+
"720p": {1: (0.05, 36)},
|
40 |
+
"1024": {1: (0.05, 36)},
|
41 |
+
# ---
|
42 |
+
"1080p": {1: (0.1, 5)},
|
43 |
+
# ---
|
44 |
+
"2048": {1: (0.1, 5)},
|
45 |
+
}
|
46 |
+
|
47 |
+
grad_checkpoint = True
|
48 |
+
|
49 |
+
# Acceleration settings
|
50 |
+
num_workers = 8
|
51 |
+
num_bucket_build_workers = 16
|
52 |
+
dtype = "bf16"
|
53 |
+
plugin = "zero2"
|
54 |
+
|
55 |
+
# Model settings
|
56 |
+
model = dict(
|
57 |
+
type="STDiT3-XL/2",
|
58 |
+
from_pretrained=None,
|
59 |
+
qk_norm=True,
|
60 |
+
enable_flash_attn=True,
|
61 |
+
enable_layernorm_kernel=True,
|
62 |
+
freeze_y_embedder=True,
|
63 |
+
)
|
64 |
+
vae = dict(
|
65 |
+
type="OpenSoraVAE_V1_2",
|
66 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
67 |
+
micro_frame_size=17,
|
68 |
+
micro_batch_size=4,
|
69 |
+
)
|
70 |
+
text_encoder = dict(
|
71 |
+
type="t5",
|
72 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
73 |
+
model_max_length=300,
|
74 |
+
shardformer=True,
|
75 |
+
local_files_only=True,
|
76 |
+
)
|
77 |
+
scheduler = dict(
|
78 |
+
type="rflow",
|
79 |
+
use_timestep_transform=True,
|
80 |
+
sample_method="logit-normal",
|
81 |
+
)
|
82 |
+
|
83 |
+
# Mask settings
|
84 |
+
mask_ratios = {
|
85 |
+
"random": 0.05,
|
86 |
+
"intepolate": 0.005,
|
87 |
+
"quarter_random": 0.005,
|
88 |
+
"quarter_head": 0.005,
|
89 |
+
"quarter_tail": 0.005,
|
90 |
+
"quarter_head_tail": 0.005,
|
91 |
+
"image_random": 0.025,
|
92 |
+
"image_head": 0.05,
|
93 |
+
"image_tail": 0.025,
|
94 |
+
"image_head_tail": 0.025,
|
95 |
+
}
|
96 |
+
|
97 |
+
# Log settings
|
98 |
+
seed = 42
|
99 |
+
outputs = "outputs"
|
100 |
+
wandb = False
|
101 |
+
epochs = 1000
|
102 |
+
log_every = 10
|
103 |
+
ckpt_every = 200
|
104 |
+
|
105 |
+
# optimization settings
|
106 |
+
load = None
|
107 |
+
grad_clip = 1.0
|
108 |
+
lr = 1e-4
|
109 |
+
ema_decay = 0.99
|
110 |
+
adam_eps = 1e-15
|
111 |
+
warmup_steps = 1000
|
configs/opensora-v1-2/train/stage1_feat.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(type="BatchFeatureDataset")
|
3 |
+
grad_checkpoint = True
|
4 |
+
num_workers = 4
|
5 |
+
|
6 |
+
# Acceleration settings
|
7 |
+
dtype = "bf16"
|
8 |
+
plugin = "zero2"
|
9 |
+
|
10 |
+
# Model settings
|
11 |
+
model = dict(
|
12 |
+
type="STDiT3-XL/2",
|
13 |
+
from_pretrained=None,
|
14 |
+
qk_norm=True,
|
15 |
+
enable_flash_attn=True,
|
16 |
+
enable_layernorm_kernel=True,
|
17 |
+
freeze_y_embedder=True,
|
18 |
+
skip_y_embedder=True,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="rflow",
|
22 |
+
use_timestep_transform=True,
|
23 |
+
sample_method="logit-normal",
|
24 |
+
)
|
25 |
+
|
26 |
+
vae_out_channels = 4
|
27 |
+
model_max_length = 300
|
28 |
+
text_encoder_output_dim = 4096
|
29 |
+
load_video_features = True
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Mask settings
|
33 |
+
mask_ratios = {
|
34 |
+
"random": 0.2,
|
35 |
+
"intepolate": 0.01,
|
36 |
+
"quarter_random": 0.01,
|
37 |
+
"quarter_head": 0.01,
|
38 |
+
"quarter_tail": 0.01,
|
39 |
+
"quarter_head_tail": 0.01,
|
40 |
+
"image_random": 0.05,
|
41 |
+
"image_head": 0.1,
|
42 |
+
"image_tail": 0.05,
|
43 |
+
"image_head_tail": 0.05,
|
44 |
+
}
|
45 |
+
|
46 |
+
# Log settings
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs"
|
49 |
+
wandb = False
|
50 |
+
epochs = 1000
|
51 |
+
log_every = 10
|
52 |
+
ckpt_every = 500
|
53 |
+
|
54 |
+
# optimization settings
|
55 |
+
load = None
|
56 |
+
grad_clip = 1.0
|
57 |
+
lr = 2e-4
|
58 |
+
ema_decay = 0.99
|
59 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage2.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 1.0), 5), 408: ((0.5, 1.0), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 1.0), 5), 408: ((0.4, 1.0), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.5, 141), 51: (0.15, 8), 102: ((0.3, 0.5), 4), 204: ((0.3, 1.0), 2), 408: ((0.5, 0.5), 1)},
|
15 |
+
"512": {1: (0.4, 141), 51: (0.15, 8), 102: ((0.2, 0.4), 4), 204: ((0.2, 1.0), 2), 408: ((0.4, 0.5), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.5, 89), 51: (0.2, 5), 102: (0.2, 2), 204: (0.1, 1)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.1, 36), 51: (0.03, 1)},
|
20 |
+
"1024": {1: (0.1, 36), 51: (0.02, 1)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.01, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.01, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
mask_ratios = {
|
65 |
+
"random": 0.05,
|
66 |
+
"intepolate": 0.005,
|
67 |
+
"quarter_random": 0.005,
|
68 |
+
"quarter_head": 0.005,
|
69 |
+
"quarter_tail": 0.005,
|
70 |
+
"quarter_head_tail": 0.005,
|
71 |
+
"image_random": 0.025,
|
72 |
+
"image_head": 0.05,
|
73 |
+
"image_tail": 0.025,
|
74 |
+
"image_head_tail": 0.025,
|
75 |
+
}
|
76 |
+
|
77 |
+
# Log settings
|
78 |
+
seed = 42
|
79 |
+
outputs = "outputs"
|
80 |
+
wandb = False
|
81 |
+
epochs = 1000
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 200
|
84 |
+
|
85 |
+
# optimization settings
|
86 |
+
load = None
|
87 |
+
grad_clip = 1.0
|
88 |
+
lr = 1e-4
|
89 |
+
ema_decay = 0.99
|
90 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage3.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 20s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: (1.0, 27), 204: (1.0, 13), 408: (1.0, 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.5), 2)},
|
12 |
+
"240p": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.4), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.3), 1)},
|
15 |
+
"512": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.2), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (1.0, 89), 51: (0.5, 5), 102: (0.5, 3), 204: ((0.5, 0.5), 1), 408: (0.0, None)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.3, 36), 51: (0.2, 2), 102: (0.1, 1), 204: (0.0, None)},
|
20 |
+
"1024": {1: (0.3, 36), 51: (0.1, 2), 102: (0.1, 1), 204: (0.0, None)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.05, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
# 25%
|
65 |
+
mask_ratios = {
|
66 |
+
"random": 0.01,
|
67 |
+
"intepolate": 0.002,
|
68 |
+
"quarter_random": 0.002,
|
69 |
+
"quarter_head": 0.002,
|
70 |
+
"quarter_tail": 0.002,
|
71 |
+
"quarter_head_tail": 0.002,
|
72 |
+
"image_random": 0.0,
|
73 |
+
"image_head": 0.22,
|
74 |
+
"image_tail": 0.005,
|
75 |
+
"image_head_tail": 0.005,
|
76 |
+
}
|
77 |
+
|
78 |
+
# Log settings
|
79 |
+
seed = 42
|
80 |
+
outputs = "outputs"
|
81 |
+
wandb = False
|
82 |
+
epochs = 1000
|
83 |
+
log_every = 10
|
84 |
+
ckpt_every = 200
|
85 |
+
|
86 |
+
# optimization settings
|
87 |
+
load = None
|
88 |
+
grad_clip = 1.0
|
89 |
+
lr = 1e-4
|
90 |
+
ema_decay = 0.99
|
91 |
+
adam_eps = 1e-15
|
92 |
+
warmup_steps = 1000
|
configs/opensora/inference/16x256x256.py
CHANGED
@@ -7,28 +7,33 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
-
enable_layernorm_kernel=
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
16 |
from_pretrained="stabilityai/sd-vae-ft-ema",
|
|
|
17 |
)
|
18 |
text_encoder = dict(
|
19 |
type="t5",
|
20 |
-
from_pretrained="
|
21 |
model_max_length=120,
|
22 |
)
|
23 |
scheduler = dict(
|
24 |
type="iddpm",
|
25 |
num_sampling_steps=100,
|
26 |
-
cfg_scale=
|
|
|
27 |
)
|
28 |
-
dtype = "
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Others
|
31 |
-
batch_size =
|
32 |
seed = 42
|
33 |
-
|
34 |
-
save_dir = "./outputs/samples/"
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
16 |
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=4,
|
18 |
)
|
19 |
text_encoder = dict(
|
20 |
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
model_max_length=120,
|
23 |
)
|
24 |
scheduler = dict(
|
25 |
type="iddpm",
|
26 |
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
cfg_channel=3, # or None
|
29 |
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Condition
|
33 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
34 |
+
prompt = None # prompt has higher priority than prompt_path
|
35 |
|
36 |
# Others
|
37 |
+
batch_size = 1
|
38 |
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
|
configs/opensora/inference/16x512x512-rflow.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="rflow",
|
26 |
+
num_sampling_steps=10,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "bf16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 2
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/inference/16x512x512.py
CHANGED
@@ -7,18 +7,18 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
-
enable_layernorm_kernel=
|
12 |
-
from_pretrained="PRETRAINED_MODEL"
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
16 |
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
-
micro_batch_size=
|
18 |
)
|
19 |
text_encoder = dict(
|
20 |
type="t5",
|
21 |
-
from_pretrained="
|
22 |
model_max_length=120,
|
23 |
)
|
24 |
scheduler = dict(
|
@@ -26,10 +26,10 @@ scheduler = dict(
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
-
dtype = "
|
30 |
|
31 |
# Others
|
32 |
batch_size = 2
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
-
save_dir = "./
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
15 |
type="VideoAutoencoderKL",
|
16 |
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
)
|
19 |
text_encoder = dict(
|
20 |
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
model_max_length=120,
|
23 |
)
|
24 |
scheduler = dict(
|
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
+
dtype = "bf16"
|
30 |
|
31 |
# Others
|
32 |
batch_size = 2
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/inference/64x512x512.py
CHANGED
@@ -7,8 +7,8 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
-
|
11 |
-
enable_layernorm_kernel=
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
@@ -18,7 +18,7 @@ vae = dict(
|
|
18 |
)
|
19 |
text_encoder = dict(
|
20 |
type="t5",
|
21 |
-
from_pretrained="
|
22 |
model_max_length=120,
|
23 |
)
|
24 |
scheduler = dict(
|
@@ -26,10 +26,10 @@ scheduler = dict(
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
-
dtype = "
|
30 |
|
31 |
# Others
|
32 |
batch_size = 1
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
-
save_dir = "./
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
14 |
vae = dict(
|
|
|
18 |
)
|
19 |
text_encoder = dict(
|
20 |
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
model_max_length=120,
|
23 |
)
|
24 |
scheduler = dict(
|
|
|
26 |
num_sampling_steps=100,
|
27 |
cfg_scale=7.0,
|
28 |
)
|
29 |
+
dtype = "bf16"
|
30 |
|
31 |
# Others
|
32 |
batch_size = 1
|
33 |
seed = 42
|
34 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./samples/samples/"
|
configs/opensora/train/16x256x256-mask.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"identity": 0.7,
|
28 |
+
"random": 0.15,
|
29 |
+
"mask_head": 0.05,
|
30 |
+
"mask_tail": 0.05,
|
31 |
+
"mask_head_tail": 0.05,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee-rflow.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
# from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
# from_pretrained = "/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/OpenSora-v1-HQ-16x512x512.pth",
|
24 |
+
# from_pretrained = "OpenSora-v1-HQ-16x512x512.pth",
|
25 |
+
from_pretrained="PRETRAINED_MODEL",
|
26 |
+
enable_flash_attn=True,
|
27 |
+
enable_layernorm_kernel=True,
|
28 |
+
)
|
29 |
+
# mask_ratios = [0.5, 0.29, 0.07, 0.07, 0.07]
|
30 |
+
# mask_ratios = {
|
31 |
+
# "identity": 0.9,
|
32 |
+
# "random": 0.06,
|
33 |
+
# "mask_head": 0.01,
|
34 |
+
# "mask_tail": 0.01,
|
35 |
+
# "mask_head_tail": 0.02,
|
36 |
+
# }
|
37 |
+
vae = dict(
|
38 |
+
type="VideoAutoencoderKL",
|
39 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
40 |
+
)
|
41 |
+
text_encoder = dict(
|
42 |
+
type="t5",
|
43 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
44 |
+
model_max_length=120,
|
45 |
+
shardformer=True,
|
46 |
+
)
|
47 |
+
scheduler = dict(
|
48 |
+
type="rflow",
|
49 |
+
# timestep_respacing="",
|
50 |
+
)
|
51 |
+
|
52 |
+
# Others
|
53 |
+
seed = 42
|
54 |
+
outputs = "outputs"
|
55 |
+
wandb = True
|
56 |
+
|
57 |
+
epochs = 1
|
58 |
+
log_every = 10
|
59 |
+
ckpt_every = 1000
|
60 |
+
load = None
|
61 |
+
|
62 |
+
batch_size = 16
|
63 |
+
lr = 2e-5
|
64 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
mask_ratios = {
|
27 |
+
"identity": 0.5,
|
28 |
+
"random": 0.29,
|
29 |
+
"mask_head": 0.07,
|
30 |
+
"mask_tail": 0.07,
|
31 |
+
"mask_head_tail": 0.07,
|
32 |
+
}
|
33 |
+
vae = dict(
|
34 |
+
type="VideoAutoencoderKL",
|
35 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
36 |
+
)
|
37 |
+
text_encoder = dict(
|
38 |
+
type="t5",
|
39 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
40 |
+
model_max_length=120,
|
41 |
+
shardformer=True,
|
42 |
+
)
|
43 |
+
scheduler = dict(
|
44 |
+
type="iddpm-speed",
|
45 |
+
timestep_respacing="",
|
46 |
+
)
|
47 |
+
|
48 |
+
# Others
|
49 |
+
seed = 42
|
50 |
+
outputs = "outputs"
|
51 |
+
wandb = False
|
52 |
+
|
53 |
+
epochs = 1000
|
54 |
+
log_every = 10
|
55 |
+
ckpt_every = 1000
|
56 |
+
load = None
|
57 |
+
|
58 |
+
batch_size = 8
|
59 |
+
lr = 2e-5
|
60 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
@@ -29,7 +29,7 @@ vae = dict(
|
|
29 |
)
|
30 |
text_encoder = dict(
|
31 |
type="t5",
|
32 |
-
from_pretrained="
|
33 |
model_max_length=120,
|
34 |
shardformer=True,
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 0
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
29 |
)
|
30 |
text_encoder = dict(
|
31 |
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
model_max_length=120,
|
34 |
shardformer=True,
|
35 |
)
|
configs/opensora/train/16x512x512.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
@@ -30,7 +30,7 @@ vae = dict(
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
-
from_pretrained="
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
configs/opensora/train/360x512x512.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
-
num_frames = 360
|
2 |
-
frame_interval = 1
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
num_workers = 4
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
12 |
dtype = "bf16"
|
@@ -20,7 +26,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
@@ -31,7 +37,7 @@ vae = dict(
|
|
31 |
)
|
32 |
text_encoder = dict(
|
33 |
type="t5",
|
34 |
-
from_pretrained="
|
35 |
model_max_length=120,
|
36 |
shardformer=True,
|
37 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=360,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
|
17 |
# Define acceleration
|
18 |
dtype = "bf16"
|
|
|
26 |
space_scale=1.0,
|
27 |
time_scale=2 / 3,
|
28 |
from_pretrained=None,
|
29 |
+
enable_flash_attn=True,
|
30 |
enable_layernorm_kernel=True,
|
31 |
enable_sequence_parallelism=True, # enable sq here
|
32 |
)
|
|
|
37 |
)
|
38 |
text_encoder = dict(
|
39 |
type="t5",
|
40 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
41 |
model_max_length=120,
|
42 |
shardformer=True,
|
43 |
)
|
configs/opensora/train/64x512x512-sp.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
-
num_frames = 64
|
2 |
-
frame_interval = 2
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
-
plugin = "zero2
|
15 |
sp_size = 2
|
16 |
|
17 |
# Define model
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
@@ -30,7 +30,7 @@ vae = dict(
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
-
from_pretrained="
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
sp_size = 2
|
16 |
|
17 |
# Define model
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
configs/opensora/train/64x512x512.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
num_frames = 64
|
2 |
-
frame_interval = 2
|
3 |
-
image_size = (512, 512)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
@@ -30,7 +30,7 @@ vae = dict(
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
-
from_pretrained="
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=64,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
30 |
)
|
31 |
text_encoder = dict(
|
32 |
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
model_max_length=120,
|
35 |
shardformer=True,
|
36 |
)
|
configs/pixart/inference/16x256x256.py
CHANGED
@@ -15,18 +15,18 @@ vae = dict(
|
|
15 |
)
|
16 |
text_encoder = dict(
|
17 |
type="t5",
|
18 |
-
from_pretrained="
|
19 |
model_max_length=120,
|
20 |
)
|
21 |
scheduler = dict(
|
22 |
type="dpm-solver",
|
23 |
-
num_sampling_steps=
|
24 |
-
cfg_scale=
|
25 |
)
|
26 |
-
dtype = "
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
-
save_dir = "./
|
|
|
15 |
)
|
16 |
text_encoder = dict(
|
17 |
type="t5",
|
18 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
19 |
model_max_length=120,
|
20 |
)
|
21 |
scheduler = dict(
|
22 |
type="dpm-solver",
|
23 |
+
num_sampling_steps=20,
|
24 |
+
cfg_scale=7.0,
|
25 |
)
|
26 |
+
dtype = "bf16"
|
27 |
|
28 |
# Others
|
29 |
batch_size = 2
|
30 |
seed = 42
|
31 |
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x1024MS.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
num_frames = 1
|
2 |
fps = 1
|
3 |
image_size = (1920, 512)
|
4 |
-
multi_resolution =
|
5 |
|
6 |
# Define model
|
7 |
model = dict(
|
@@ -17,7 +17,7 @@ vae = dict(
|
|
17 |
)
|
18 |
text_encoder = dict(
|
19 |
type="t5",
|
20 |
-
from_pretrained="
|
21 |
model_max_length=120,
|
22 |
)
|
23 |
scheduler = dict(
|
@@ -25,10 +25,10 @@ scheduler = dict(
|
|
25 |
num_sampling_steps=20,
|
26 |
cfg_scale=7.0,
|
27 |
)
|
28 |
-
dtype = "
|
29 |
|
30 |
# Others
|
31 |
batch_size = 2
|
32 |
seed = 42
|
33 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
-
save_dir = "./
|
|
|
1 |
num_frames = 1
|
2 |
fps = 1
|
3 |
image_size = (1920, 512)
|
4 |
+
multi_resolution = "PixArtMS"
|
5 |
|
6 |
# Define model
|
7 |
model = dict(
|
|
|
17 |
)
|
18 |
text_encoder = dict(
|
19 |
type="t5",
|
20 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
21 |
model_max_length=120,
|
22 |
)
|
23 |
scheduler = dict(
|
|
|
25 |
num_sampling_steps=20,
|
26 |
cfg_scale=7.0,
|
27 |
)
|
28 |
+
dtype = "bf16"
|
29 |
|
30 |
# Others
|
31 |
batch_size = 2
|
32 |
seed = 42
|
33 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x20481B.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-1B/2",
|
8 |
+
from_pretrained="PixArt-1B-2.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x2048MS.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
from_pretrained="PixArt-Sigma-XL-2-2K-MS.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x256x256.py
CHANGED
@@ -16,18 +16,18 @@ vae = dict(
|
|
16 |
)
|
17 |
text_encoder = dict(
|
18 |
type="t5",
|
19 |
-
from_pretrained="
|
20 |
model_max_length=120,
|
21 |
)
|
22 |
scheduler = dict(
|
23 |
type="dpm-solver",
|
24 |
-
num_sampling_steps=
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
-
dtype = "
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
-
save_dir = "./
|
|
|
16 |
)
|
17 |
text_encoder = dict(
|
18 |
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
model_max_length=120,
|
21 |
)
|
22 |
scheduler = dict(
|
23 |
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
+
dtype = "bf16"
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x512x512-rflow.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PRETRAINED_MODEL",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="rflow",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
+
|
36 |
+
# Others
|
37 |
+
batch_size = 2
|
38 |
+
seed = 42
|
39 |
+
save_dir = "./outputs/samples2/"
|
configs/pixart/inference/1x512x512.py
CHANGED
@@ -16,18 +16,24 @@ vae = dict(
|
|
16 |
)
|
17 |
text_encoder = dict(
|
18 |
type="t5",
|
19 |
-
from_pretrained="
|
20 |
model_max_length=120,
|
21 |
)
|
22 |
scheduler = dict(
|
23 |
type="dpm-solver",
|
24 |
-
num_sampling_steps=
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
-
dtype = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Others
|
30 |
batch_size = 2
|
31 |
seed = 42
|
32 |
-
|
33 |
-
save_dir = "./outputs/samples/"
|
|
|
16 |
)
|
17 |
text_encoder = dict(
|
18 |
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
model_max_length=120,
|
21 |
)
|
22 |
scheduler = dict(
|
23 |
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
cfg_scale=7.0,
|
26 |
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
|
36 |
# Others
|
37 |
batch_size = 2
|
38 |
seed = 42
|
39 |
+
save_dir = "./samples/samples/"
|
|
configs/pixart/train/16x256x256.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
num_frames = 16
|
2 |
-
frame_interval = 3
|
3 |
-
image_size = (256, 256)
|
4 |
-
|
5 |
# Define dataset
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Define acceleration
|
|
|
12 |
dtype = "bf16"
|
13 |
-
grad_checkpoint =
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
@@ -29,7 +29,7 @@ vae = dict(
|
|
29 |
)
|
30 |
text_encoder = dict(
|
31 |
type="t5",
|
32 |
-
from_pretrained="
|
33 |
model_max_length=120,
|
34 |
shardformer=True,
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
15 |
sp_size = 1
|
16 |
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
29 |
)
|
30 |
text_encoder = dict(
|
31 |
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
model_max_length=120,
|
34 |
shardformer=True,
|
35 |
)
|
configs/pixart/train/1x2048x2048.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path="/home/zhaowangbo/data/csv/image-v1_1_ext_noempty_rcp_clean_info.csv",
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(2048, 2048),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-1B/2",
|
20 |
+
space_scale=4.0,
|
21 |
+
no_temporal_pos_emb=True,
|
22 |
+
from_pretrained="PixArt-1B-2.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
30 |
+
subfolder="vae",
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=300,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|