lt_space / app /models /benchmark_script.py
Arsive2's picture
fixed req
9bdfc0c
#!/usr/bin/env python
"""
Benchmark script to compare performance between standard Transformers
and CTranslate2 optimized translation models.
"""
import argparse
import json
import logging
import os
import sys
import time
from typing import Dict, List, Tuple
import numpy as np
import torch
import tqdm
# Add project root to path for imports
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Import our models
try:
from app.models.translation_model import TranslationModel # Standard model
from app.models.translation_model_ct2 import TranslationModelCT2 # CTranslate2 model
except ImportError:
logger.error("Could not import translation models. Make sure you're running this script from the project root.")
sys.exit(1)
# Test sentences for various languages
TEST_SENTENCES = {
"en-es": [
"Hello, how are you today?",
"I would like to book a flight to Madrid for next week.",
"The quick brown fox jumps over the lazy dog.",
"Artificial intelligence is transforming the way we live and work.",
"Please contact our customer service if you have any questions."
],
"en-fr": [
"Hello, how are you today?",
"I would like to book a flight to Paris for next week.",
"The quick brown fox jumps over the lazy dog.",
"Artificial intelligence is transforming the way we live and work.",
"Please contact our customer service if you have any questions."
],
"en-de": [
"Hello, how are you today?",
"I would like to book a flight to Berlin for next week.",
"The quick brown fox jumps over the lazy dog.",
"Artificial intelligence is transforming the way we live and work.",
"Please contact our customer service if you have any questions."
],
"en-dra": [
"Hello, how are you today?",
"I would like to book a flight to Chennai for next week.",
"The quick brown fox jumps over the lazy dog.",
"Artificial intelligence is transforming the way we live and work.",
"Please contact our customer service if you have any questions."
]
}
def benchmark_standard_model(
src_lang: str,
tgt_lang: str,
sentences: List[str],
num_runs: int = 5,
warm_up: int = 2
) -> Dict:
"""Benchmark the standard Transformers model."""
logger.info(f"Benchmarking standard Transformers model for {src_lang}-{tgt_lang}")
# Initialize model
model = TranslationModel()
# Warm-up runs
logger.info(f"Performing {warm_up} warm-up runs...")
for _ in range(warm_up):
for sentence in sentences[:2]: # Use only first 2 sentences for warm-up
model.translate(sentence, src_lang, tgt_lang)
# Actual benchmark
logger.info(f"Performing {num_runs} benchmark runs...")
times = []
translations = []
for run in range(num_runs):
run_times = []
run_translations = []
for sentence in tqdm.tqdm(sentences, desc=f"Run {run+1}/{num_runs}"):
start_time = time.time()
translation = model.translate(sentence, src_lang, tgt_lang)
elapsed_time = time.time() - start_time
run_times.append(elapsed_time)
run_translations.append(translation)
times.append(run_times)
# Only keep translations from the first run
if run == 0:
translations = run_translations
# Calculate statistics
all_times = np.array(times).flatten()
stats = {
"mean_time": float(np.mean(all_times)),
"median_time": float(np.median(all_times)),
"std_dev": float(np.std(all_times)),
"min_time": float(np.min(all_times)),
"max_time": float(np.max(all_times)),
"total_time": float(np.sum(all_times)),
"num_sentences": len(sentences) * num_runs,
"translations": translations
}
return stats
def benchmark_ct2_model(
src_lang: str,
tgt_lang: str,
sentences: List[str],
num_runs: int = 5,
warm_up: int = 2
) -> Dict:
"""Benchmark the CTranslate2 optimized model."""
logger.info(f"Benchmarking CTranslate2 model for {src_lang}-{tgt_lang}")
# Initialize model
model = TranslationModelCT2()
# Warm-up runs
logger.info(f"Performing {warm_up} warm-up runs...")
for _ in range(warm_up):
for sentence in sentences[:2]: # Use only first 2 sentences for warm-up
model.translate(sentence, src_lang, tgt_lang)
# Actual benchmark
logger.info(f"Performing {num_runs} benchmark runs...")
times = []
translations = []
for run in range(num_runs):
run_times = []
run_translations = []
for sentence in tqdm.tqdm(sentences, desc=f"Run {run+1}/{num_runs}"):
start_time = time.time()
translation = model.translate(sentence, src_lang, tgt_lang)
elapsed_time = time.time() - start_time
run_times.append(elapsed_time)
run_translations.append(translation)
times.append(run_times)
# Only keep translations from the first run
if run == 0:
translations = run_translations
# Calculate statistics
all_times = np.array(times).flatten()
stats = {
"mean_time": float(np.mean(all_times)),
"median_time": float(np.median(all_times)),
"std_dev": float(np.std(all_times)),
"min_time": float(np.min(all_times)),
"max_time": float(np.max(all_times)),
"total_time": float(np.sum(all_times)),
"num_sentences": len(sentences) * num_runs,
"translations": translations
}
return stats
def benchmark_batch(
src_lang: str,
tgt_lang: str,
sentences: List[str],
num_runs: int = 5,
warm_up: int = 2
) -> Dict:
"""Benchmark batch translation with CTranslate2."""
logger.info(f"Benchmarking CTranslate2 batch translation for {src_lang}-{tgt_lang}")
# Initialize model
model = TranslationModelCT2()
# Warm-up runs
logger.info(f"Performing {warm_up} warm-up runs...")
for _ in range(warm_up):
model.translate_batch(sentences[:2], src_lang, tgt_lang)
# Actual benchmark
logger.info(f"Performing {num_runs} benchmark runs...")
times = []
translations = []
for run in range(num_runs):
start_time = time.time()
batch_translations = model.translate_batch(sentences, src_lang, tgt_lang)
elapsed_time = time.time() - start_time
times.append(elapsed_time)
# Only keep translations from the first run
if run == 0:
translations = batch_translations
# Calculate statistics
stats = {
"mean_time": float(np.mean(times)),
"median_time": float(np.median(times)),
"std_dev": float(np.std(times)),
"min_time": float(np.min(times)),
"max_time": float(np.max(times)),
"total_time": float(np.sum(times)),
"num_sentences": len(sentences),
"num_batches": num_runs,
"translations": translations
}
return stats
def run_benchmarks(
lang_pairs: List[Tuple[str, str]],
num_runs: int = 5,
warm_up: int = 2,
output_file: str = "benchmark_results.json"
) -> Dict:
"""Run benchmarks for specified language pairs."""
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Running benchmarks on {device}")
results = {
"device": device,
"cuda_available": torch.cuda.is_available(),
"cuda_version": torch.version.cuda if torch.cuda.is_available() else None,
"num_runs": num_runs,
"warm_up_runs": warm_up,
"language_pairs": {}
}
for src_lang, tgt_lang in lang_pairs:
model_key = f"{src_lang}-{tgt_lang}"
if model_key not in TEST_SENTENCES:
logger.warning(f"No test sentences available for {model_key}, skipping...")
continue
logger.info(f"Benchmarking {model_key}...")
sentences = TEST_SENTENCES[model_key]
# Run standard model benchmark
standard_stats = benchmark_standard_model(
src_lang, tgt_lang, sentences, num_runs, warm_up
)
# Run CTranslate2 model benchmark
ct2_stats = benchmark_ct2_model(
src_lang, tgt_lang, sentences, num_runs, warm_up
)
# Run batch translation benchmark
batch_stats = benchmark_batch(
src_lang, tgt_lang, sentences, num_runs, warm_up
)
# Calculate speedup
speedup = standard_stats["mean_time"] / ct2_stats["mean_time"]
batch_speedup = standard_stats["mean_time"] * len(sentences) / batch_stats["mean_time"]
results["language_pairs"][model_key] = {
"standard_model": standard_stats,
"ct2_model": ct2_stats,
"batch_translation": batch_stats,
"speedup": float(speedup),
"batch_speedup": float(batch_speedup)
}
# Print summary
logger.info(f"\nResults for {model_key}:")
logger.info(f" Standard model average time: {standard_stats['mean_time']:.4f}s")
logger.info(f" CTranslate2 model average time: {ct2_stats['mean_time']:.4f}s")
logger.info(f" Batch translation average time: {batch_stats['mean_time']:.4f}s (for {len(sentences)} sentences)")
logger.info(f" Speedup: {speedup:.2f}x")
logger.info(f" Batch speedup: {batch_speedup:.2f}x")
# Save results to file
with open(output_file, "w") as f:
json.dump(results, f, indent=2)
logger.info(f"Benchmark results saved to {output_file}")
return results
def main():
"""Main entry point for the benchmark script."""
parser = argparse.ArgumentParser(
description="Benchmark translation models performance"
)
parser.add_argument(
"--lang-pairs",
type=str,
nargs="+",
default=["en-es", "en-fr", "en-de", "en-dra"],
help="Language pairs to benchmark (e.g., 'en-es en-fr')"
)
parser.add_argument(
"--runs",
type=int,
default=5,
help="Number of benchmark runs"
)
parser.add_argument(
"--warm-up",
type=int,
default=2,
help="Number of warm-up runs"
)
parser.add_argument(
"--output",
type=str,
default="benchmark_results.json",
help="Output file for benchmark results"
)
args = parser.parse_args()
# Parse language pairs
lang_pairs = []
for pair in args.lang_pairs:
if "-" in pair:
src, tgt = pair.split("-")
lang_pairs.append((src, tgt))
else:
logger.warning(f"Invalid language pair format: {pair}, skipping...")
if not lang_pairs:
logger.error("No valid language pairs specified")
return 1
# Run benchmarks
run_benchmarks(
lang_pairs=lang_pairs,
num_runs=args.runs,
warm_up=args.warm_up,
output_file=args.output
)
return 0
if __name__ == "__main__":
sys.exit(main())