Spaces:
Runtime error
Runtime error
Arrcttacsrks
commited on
Upload llama.cpp/ggml/src/ggml-cuda/fattn-tile-f32.cu with huggingface_hub
Browse files
llama.cpp/ggml/src/ggml-cuda/fattn-tile-f32.cu
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "common.cuh"
|
2 |
+
#include "fattn-common.cuh"
|
3 |
+
#include "fattn-tile-f32.cuh"
|
4 |
+
|
5 |
+
#define FATTN_KQ_STRIDE_TILE_F32 32
|
6 |
+
|
7 |
+
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
8 |
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
9 |
+
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
10 |
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
11 |
+
static __global__ void flash_attn_tile_ext_f32(
|
12 |
+
const char * __restrict__ Q,
|
13 |
+
const char * __restrict__ K,
|
14 |
+
const char * __restrict__ V,
|
15 |
+
const char * __restrict__ mask,
|
16 |
+
float * __restrict__ dst,
|
17 |
+
float2 * __restrict__ dst_meta,
|
18 |
+
const float scale,
|
19 |
+
const float max_bias,
|
20 |
+
const float m0,
|
21 |
+
const float m1,
|
22 |
+
const uint32_t n_head_log2,
|
23 |
+
const float logit_softcap,
|
24 |
+
const int ne00,
|
25 |
+
const int ne01,
|
26 |
+
const int ne02,
|
27 |
+
const int ne03,
|
28 |
+
const int ne10,
|
29 |
+
const int ne11,
|
30 |
+
const int ne12,
|
31 |
+
const int ne13,
|
32 |
+
const int ne31,
|
33 |
+
const int nb31,
|
34 |
+
const int nb01,
|
35 |
+
const int nb02,
|
36 |
+
const int nb03,
|
37 |
+
const int nb11,
|
38 |
+
const int nb12,
|
39 |
+
const int nb13,
|
40 |
+
const int nb21,
|
41 |
+
const int nb22,
|
42 |
+
const int nb23,
|
43 |
+
const int ne0,
|
44 |
+
const int ne1,
|
45 |
+
const int ne2,
|
46 |
+
const int ne3) {
|
47 |
+
#ifndef FLASH_ATTN_AVAILABLE
|
48 |
+
NO_DEVICE_CODE;
|
49 |
+
return;
|
50 |
+
#endif // FLASH_ATTN_AVAILABLE
|
51 |
+
// Skip unused kernel variants for faster compilation:
|
52 |
+
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
53 |
+
NO_DEVICE_CODE;
|
54 |
+
return;
|
55 |
+
}
|
56 |
+
|
57 |
+
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
58 |
+
|
59 |
+
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
60 |
+
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
61 |
+
|
62 |
+
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
63 |
+
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
64 |
+
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
65 |
+
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
66 |
+
const half * maskh = (const half *) mask + ne11*ic0;
|
67 |
+
|
68 |
+
const int stride_KV2 = nb11 / sizeof(half2);
|
69 |
+
|
70 |
+
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
71 |
+
|
72 |
+
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
73 |
+
|
74 |
+
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
75 |
+
|
76 |
+
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
77 |
+
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
78 |
+
|
79 |
+
float kqmax[ncols/nwarps];
|
80 |
+
#pragma unroll
|
81 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
82 |
+
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
83 |
+
}
|
84 |
+
float kqsum[ncols/nwarps] = {0.0f};
|
85 |
+
|
86 |
+
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
87 |
+
|
88 |
+
// Convert Q to half2 and store in registers:
|
89 |
+
__shared__ float Q_f[ncols][D];
|
90 |
+
#pragma unroll
|
91 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
92 |
+
const int j = j0 + threadIdx.y;
|
93 |
+
|
94 |
+
#pragma unroll
|
95 |
+
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
96 |
+
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
97 |
+
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
98 |
+
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
__syncthreads();
|
103 |
+
|
104 |
+
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
|
105 |
+
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
|
106 |
+
// Calculate KQ tile and keep track of new maximum KQ values:
|
107 |
+
|
108 |
+
float kqmax_new[ncols/nwarps];
|
109 |
+
#pragma unroll
|
110 |
+
for (int j = 0; j < ncols/nwarps; ++j) {
|
111 |
+
kqmax_new[j] = kqmax[j];
|
112 |
+
}
|
113 |
+
|
114 |
+
#pragma unroll
|
115 |
+
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
116 |
+
const int i_KQ = i_KQ_0 + threadIdx.y;
|
117 |
+
|
118 |
+
#pragma unroll
|
119 |
+
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
120 |
+
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
121 |
+
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
122 |
+
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
__syncthreads();
|
127 |
+
|
128 |
+
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
129 |
+
|
130 |
+
#pragma unroll
|
131 |
+
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
132 |
+
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
133 |
+
float Q_k[ncols/nwarps];
|
134 |
+
|
135 |
+
#pragma unroll
|
136 |
+
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
137 |
+
const int i_KQ = i_KQ_0 + threadIdx.x;
|
138 |
+
|
139 |
+
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
140 |
+
}
|
141 |
+
#pragma unroll
|
142 |
+
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
143 |
+
const int j_KQ = j_KQ_0 + threadIdx.y;
|
144 |
+
|
145 |
+
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
146 |
+
}
|
147 |
+
|
148 |
+
#pragma unroll
|
149 |
+
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
150 |
+
#pragma unroll
|
151 |
+
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
152 |
+
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
153 |
+
}
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
#pragma unroll
|
158 |
+
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
159 |
+
const int i_KQ = i_KQ_0 + threadIdx.x;
|
160 |
+
|
161 |
+
#pragma unroll
|
162 |
+
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
163 |
+
const int j_KQ = j_KQ_0 + threadIdx.y;
|
164 |
+
|
165 |
+
if (use_logit_softcap) {
|
166 |
+
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
167 |
+
}
|
168 |
+
|
169 |
+
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
170 |
+
|
171 |
+
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
172 |
+
|
173 |
+
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
174 |
+
}
|
175 |
+
}
|
176 |
+
|
177 |
+
__syncthreads();
|
178 |
+
|
179 |
+
#pragma unroll
|
180 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
181 |
+
const int j = j0 + threadIdx.y;
|
182 |
+
|
183 |
+
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
184 |
+
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
185 |
+
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
186 |
+
|
187 |
+
float kqsum_add = 0.0f;
|
188 |
+
#pragma unroll
|
189 |
+
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
190 |
+
const int i = i0 + threadIdx.x;
|
191 |
+
|
192 |
+
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
193 |
+
const float val = expf(diff);
|
194 |
+
kqsum_add += val;
|
195 |
+
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
196 |
+
}
|
197 |
+
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
198 |
+
|
199 |
+
#pragma unroll
|
200 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
201 |
+
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
202 |
+
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
203 |
+
}
|
204 |
+
}
|
205 |
+
|
206 |
+
__syncthreads();
|
207 |
+
|
208 |
+
#pragma unroll
|
209 |
+
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
210 |
+
const int k = k0 + threadIdx.y;
|
211 |
+
|
212 |
+
#pragma unroll
|
213 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
214 |
+
const int i = i0 + threadIdx.x;
|
215 |
+
|
216 |
+
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
217 |
+
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
218 |
+
}
|
219 |
+
}
|
220 |
+
|
221 |
+
__syncthreads();
|
222 |
+
|
223 |
+
#pragma unroll
|
224 |
+
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
225 |
+
float2 V_k[(D/2)/WARP_SIZE];
|
226 |
+
float KQ_k[ncols/nwarps];
|
227 |
+
|
228 |
+
#pragma unroll
|
229 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
230 |
+
const int i = i0 + threadIdx.x;
|
231 |
+
|
232 |
+
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
233 |
+
}
|
234 |
+
#pragma unroll
|
235 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
236 |
+
const int j = j0 + threadIdx.y;
|
237 |
+
|
238 |
+
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
239 |
+
}
|
240 |
+
|
241 |
+
#pragma unroll
|
242 |
+
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
243 |
+
#pragma unroll
|
244 |
+
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
245 |
+
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
246 |
+
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
247 |
+
}
|
248 |
+
}
|
249 |
+
}
|
250 |
+
|
251 |
+
__syncthreads();
|
252 |
+
}
|
253 |
+
|
254 |
+
#pragma unroll
|
255 |
+
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
256 |
+
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
257 |
+
|
258 |
+
if (ic0 + j_VKQ >= ne01) {
|
259 |
+
return;
|
260 |
+
}
|
261 |
+
|
262 |
+
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
263 |
+
kqsum_j = warp_reduce_sum(kqsum_j);
|
264 |
+
|
265 |
+
#pragma unroll
|
266 |
+
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
267 |
+
const int i0 = i00 + 2*threadIdx.x;
|
268 |
+
|
269 |
+
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
270 |
+
if (parallel_blocks == 1) {
|
271 |
+
dst_val.x /= kqsum_j;
|
272 |
+
dst_val.y /= kqsum_j;
|
273 |
+
}
|
274 |
+
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
275 |
+
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
|
276 |
+
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
|
277 |
+
}
|
278 |
+
|
279 |
+
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
280 |
+
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
281 |
+
}
|
282 |
+
}
|
283 |
+
}
|
284 |
+
|
285 |
+
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
|
286 |
+
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
287 |
+
const ggml_tensor * Q = dst->src[0];
|
288 |
+
switch (Q->ne[0]) {
|
289 |
+
case 64: {
|
290 |
+
constexpr int D = 64;
|
291 |
+
constexpr int nwarps = 8;
|
292 |
+
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
293 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
294 |
+
} break;
|
295 |
+
case 128: {
|
296 |
+
constexpr int D = 128;
|
297 |
+
constexpr int nwarps = 8;
|
298 |
+
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
299 |
+
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
300 |
+
} break;
|
301 |
+
default: {
|
302 |
+
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
303 |
+
} break;
|
304 |
+
}
|
305 |
+
}
|
306 |
+
|
307 |
+
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
308 |
+
const ggml_tensor * KQV = dst;
|
309 |
+
const ggml_tensor * Q = dst->src[0];
|
310 |
+
|
311 |
+
float logit_softcap;
|
312 |
+
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
313 |
+
|
314 |
+
if (Q->ne[1] <= 16) {
|
315 |
+
constexpr int cols_per_block = 16;
|
316 |
+
constexpr int parallel_blocks = 4;
|
317 |
+
if (logit_softcap == 0.0f) {
|
318 |
+
constexpr bool use_logit_softcap = false;
|
319 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
320 |
+
} else {
|
321 |
+
constexpr bool use_logit_softcap = true;
|
322 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
323 |
+
}
|
324 |
+
return;
|
325 |
+
}
|
326 |
+
|
327 |
+
if (Q->ne[1] <= 32) {
|
328 |
+
constexpr int cols_per_block = 32;
|
329 |
+
constexpr int parallel_blocks = 4;
|
330 |
+
if (logit_softcap == 0.0f) {
|
331 |
+
constexpr bool use_logit_softcap = false;
|
332 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
333 |
+
} else {
|
334 |
+
constexpr bool use_logit_softcap = true;
|
335 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
336 |
+
}
|
337 |
+
return;
|
338 |
+
}
|
339 |
+
|
340 |
+
constexpr int cols_per_block = 32;
|
341 |
+
constexpr int parallel_blocks = 1;
|
342 |
+
if (logit_softcap == 0.0f) {
|
343 |
+
constexpr bool use_logit_softcap = false;
|
344 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
345 |
+
} else {
|
346 |
+
constexpr bool use_logit_softcap = true;
|
347 |
+
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
348 |
+
}
|
349 |
+
}
|