Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
from __future__ import annotations | |
import logging | |
import argparse | |
import os | |
import struct | |
import sys | |
from enum import IntEnum | |
from pathlib import Path | |
import numpy as np | |
if 'NO_LOCAL_GGUF' not in os.environ: | |
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) | |
import gguf | |
logger = logging.getLogger("ggml-to-gguf") | |
class GGMLFormat(IntEnum): | |
GGML = 0 | |
GGMF = 1 | |
GGJT = 2 | |
class GGMLFType(IntEnum): | |
ALL_F32 = 0 | |
MOSTLY_F16 = 1 | |
MOSTLY_Q4_0 = 2 | |
MOSTLY_Q4_1 = 3 | |
MOSTLY_Q4_1_SOME_F16 = 4 | |
MOSTLY_Q8_0 = 7 | |
MOSTLY_Q5_0 = 8 | |
MOSTLY_Q5_1 = 9 | |
MOSTLY_Q2_K = 10 | |
MOSTLY_Q3_K_S = 11 | |
MOSTLY_Q3_K_M = 12 | |
MOSTLY_Q3_K_L = 13 | |
MOSTLY_Q4_K_S = 14 | |
MOSTLY_Q4_K_M = 15 | |
MOSTLY_Q5_K_S = 16 | |
MOSTLY_Q5_K_M = 17 | |
MOSTLY_Q6_K = 18 | |
class Hyperparameters: | |
def __init__(self): | |
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0 | |
self.n_layer = self.n_rot = self.n_ff = 0 | |
self.ftype = GGMLFType.ALL_F32 | |
def set_n_ff(self, model): | |
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight') | |
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor' | |
ff_tensor = model.tensors[ff_tensor_idx] | |
self.n_ff = ff_tensor.dims[1] | |
def load(self, data, offset): | |
( | |
self.n_vocab, | |
self.n_embd, | |
self.n_mult, | |
self.n_head, | |
self.n_layer, | |
self.n_rot, | |
ftype, | |
) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) | |
try: | |
self.ftype = GGMLFType(ftype) | |
except ValueError: | |
raise ValueError(f'Invalid ftype {ftype}') | |
return 4 * 7 | |
def __str__(self): | |
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>' | |
class Vocab: | |
def __init__(self, load_scores = True): | |
self.items = [] | |
self.load_scores = load_scores | |
def load(self, data, offset, n_vocab): | |
orig_offset = offset | |
for _ in range(n_vocab): | |
itemlen = struct.unpack('<I', data[offset:offset + 4])[0] | |
assert itemlen < 4096, 'Absurd vocab item length' | |
offset += 4 | |
item_text = bytes(data[offset:offset + itemlen]) | |
offset += itemlen | |
if self.load_scores: | |
item_score = struct.unpack('<f', data[offset:offset + 4])[0] | |
offset += 4 | |
else: | |
item_score = 0.0 | |
self.items.append((item_text, item_score)) | |
return offset - orig_offset | |
class Tensor: | |
def __init__(self, use_padding = True): | |
self.name = None | |
self.dims: tuple[int, ...] = () | |
self.dtype = None | |
self.start_offset = 0 | |
self.len_bytes = np.int64(0) | |
self.use_padding = use_padding | |
def load(self, data, offset): | |
orig_offset = offset | |
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12]) | |
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}' | |
assert name_len < 4096, 'Absurd tensor name length' | |
quant = gguf.GGML_QUANT_SIZES.get(dtype) | |
assert quant is not None, 'Unknown tensor type' | |
(blksize, tysize) = quant | |
offset += 12 | |
self.dtype= gguf.GGMLQuantizationType(dtype) | |
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)]) | |
offset += 4 * n_dims | |
self.name = bytes(data[offset:offset + name_len]) | |
offset += name_len | |
pad = ((offset + 31) & ~31) - offset if self.use_padding else 0 | |
offset += pad | |
n_elems = np.prod(self.dims) | |
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize) | |
self.start_offset = offset | |
self.len_bytes = n_bytes | |
offset += n_bytes | |
return offset - orig_offset | |
class GGMLModel: | |
file_format: GGMLFormat | |
format_version: int | |
def __init__(self): | |
self.hyperparameters = None | |
self.vocab = None | |
self.tensor_map = {} | |
self.tensors = [] | |
def validate_header(self, data, offset): | |
magic = bytes(data[offset:offset + 4]) | |
if magic == b'GGUF': | |
raise ValueError('File is already in GGUF format.') | |
if magic == b'lmgg': | |
self.file_format = GGMLFormat.GGML | |
self.format_version = 1 | |
return 4 | |
version = struct.unpack('<I', data[offset + 4:offset + 8])[0] | |
if magic == b'fmgg': | |
if version != 1: | |
raise ValueError(f'Cannot handle unexpected GGMF file version {version}') | |
self.file_format = GGMLFormat.GGMF | |
self.format_version = version | |
return 8 | |
if magic == b'tjgg': | |
if version < 1 or version > 3: | |
raise ValueError(f'Cannot handle unexpected GGJT file version {version}') | |
self.file_format = GGMLFormat.GGJT | |
self.format_version = version | |
return 8 | |
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.") | |
def validate_conversion(self, ftype): | |
err = '' | |
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2): | |
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16): | |
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.' | |
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2): | |
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1, | |
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0): | |
err = 'Q4 and Q8 quantizations changed in GGJTv3.' | |
if len(err) > 0: | |
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.') | |
def load(self, data, offset): | |
offset += self.validate_header(data, offset) | |
hp = Hyperparameters() | |
offset += hp.load(data, offset) | |
logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') | |
self.validate_conversion(hp.ftype) | |
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML) | |
offset += vocab.load(data, offset, hp.n_vocab) | |
tensors: list[Tensor] = [] | |
tensor_map = {} | |
while offset < len(data): | |
tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF) | |
offset += tensor.load(data, offset) | |
tensor_map[tensor.name] = len(tensors) | |
tensors.append(tensor) | |
self.hyperparameters = hp | |
self.vocab = vocab | |
self.tensors = tensors | |
self.tensor_map = tensor_map | |
hp.set_n_ff(self) | |
return offset | |
class GGMLToGGUF: | |
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None): | |
hp = ggml_model.hyperparameters | |
self.model = ggml_model | |
self.data = data | |
self.cfg = cfg | |
self.params_override = params_override | |
self.vocab_override = vocab_override | |
self.special_vocab = special_vocab | |
if params_override is not None: | |
n_kv_head = params_override.n_head_kv | |
else: | |
if cfg.gqa == 1: | |
n_kv_head = hp.n_head | |
else: | |
gqa = float(cfg.gqa) | |
n_kv_head = None | |
for x in range(1, 256): | |
if float(hp.n_head) / float(x) == gqa: | |
n_kv_head = x | |
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param" | |
logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}') | |
self.n_kv_head = n_kv_head | |
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer) | |
def save(self): | |
logger.info('* Preparing to save GGUF file') | |
gguf_writer = gguf.GGUFWriter( | |
self.cfg.output, | |
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], | |
use_temp_file = False) | |
self.add_params(gguf_writer) | |
self.add_vocab(gguf_writer) | |
if self.special_vocab is not None: | |
self.special_vocab.add_to_gguf(gguf_writer) | |
self.add_tensors(gguf_writer) | |
logger.info(" gguf: write header") | |
gguf_writer.write_header_to_file() | |
logger.info(" gguf: write metadata") | |
gguf_writer.write_kv_data_to_file() | |
logger.info(" gguf: write tensors") | |
gguf_writer.write_tensors_to_file() | |
gguf_writer.close() | |
def add_params(self, gguf_writer): | |
hp = self.model.hyperparameters | |
cfg = self.cfg | |
if cfg.desc is not None: | |
desc = cfg.desc | |
else: | |
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format' | |
try: | |
# Filenames aren't necessarily valid UTF8. | |
name = cfg.name if cfg.name is not None else cfg.input.name | |
except UnicodeDecodeError: | |
name = None | |
logger.info('* Adding model parameters and KV items') | |
if name is not None: | |
gguf_writer.add_name(name) | |
gguf_writer.add_description(desc) | |
gguf_writer.add_file_type(int(hp.ftype)) | |
if self.params_override is not None: | |
po = self.params_override | |
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch' | |
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch' | |
assert po.n_head == hp.n_head, 'Model hyperparams mismatch' | |
gguf_writer.add_context_length (po.n_ctx) | |
gguf_writer.add_embedding_length (po.n_embd) | |
gguf_writer.add_block_count (po.n_layer) | |
gguf_writer.add_feed_forward_length (po.n_ff) | |
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head) | |
gguf_writer.add_head_count (po.n_head) | |
gguf_writer.add_head_count_kv (po.n_head_kv) | |
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps) | |
return | |
gguf_writer.add_context_length(cfg.context_length) | |
gguf_writer.add_embedding_length(hp.n_embd) | |
gguf_writer.add_block_count(hp.n_layer) | |
gguf_writer.add_feed_forward_length(hp.n_ff) | |
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head) | |
gguf_writer.add_head_count(hp.n_head) | |
gguf_writer.add_head_count_kv(self.n_kv_head) | |
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps)) | |
def add_vocab(self, gguf_writer): | |
hp = self.model.hyperparameters | |
gguf_writer.add_tokenizer_model('llama') | |
gguf_writer.add_tokenizer_pre('default') | |
tokens = [] | |
scores = [] | |
toktypes = [] | |
if self.vocab_override is not None: | |
vo = self.vocab_override | |
logger.info('* Adding vocab item(s)') | |
for (_, (vbytes, score, ttype)) in enumerate(vo.all_tokens()): | |
tokens.append(vbytes) | |
scores.append(score) | |
toktypes.append(ttype) | |
assert len(tokens) == hp.n_vocab, \ | |
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' | |
gguf_writer.add_token_list(tokens) | |
gguf_writer.add_token_scores(scores) | |
if len(toktypes) > 0: | |
gguf_writer.add_token_types(toktypes) | |
return | |
logger.info(f'* Adding {hp.n_vocab} vocab item(s)') | |
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab' | |
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items): | |
tt = 1 # Normal | |
# Special handling for UNK, BOS, EOS tokens. | |
if tokid <= 2: | |
if tokid == 0: | |
vbytes = b'<unk>' | |
tt = 2 | |
elif tokid == 1: | |
vbytes = b'<s>' | |
tt = 3 | |
else: | |
vbytes = b'</s>' | |
tt = 3 | |
elif len(vbytes) == 0: | |
tt = 3 # Control | |
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1: | |
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8') | |
tt = 6 # Byte | |
else: | |
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81') | |
toktypes.append(tt) | |
tokens.append(vbytes) | |
scores.append(vscore) | |
gguf_writer.add_token_list(tokens) | |
gguf_writer.add_token_scores(scores) | |
gguf_writer.add_token_types(toktypes) | |
gguf_writer.add_unk_token_id(0) | |
gguf_writer.add_bos_token_id(1) | |
gguf_writer.add_eos_token_id(2) | |
def add_tensors(self, gguf_writer): | |
tensor_map = self.name_map | |
data = self.data | |
logger.info(f'* Adding {len(self.model.tensors)} tensor(s)') | |
for tensor in self.model.tensors: | |
name = str(tensor.name, 'UTF-8') | |
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | |
assert mapped_name is not None, f'Bad name {name}' | |
tempdims = list(tensor.dims[:]) | |
if len(tempdims) > 1: | |
temp = tempdims[1] | |
tempdims[1] = tempdims[0] | |
tempdims[0] = temp | |
gguf_writer.add_tensor( | |
mapped_name, | |
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], | |
raw_shape = tempdims, | |
raw_dtype = tensor.dtype) | |
def handle_metadata(cfg, hp): | |
import examples.convert_legacy_llama as convert | |
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory' | |
hf_config_path = cfg.model_metadata_dir / "config.json" | |
orig_config_path = cfg.model_metadata_dir / "params.json" | |
# We pass a fake model here. "original" mode will check the shapes of some | |
# tensors if information is missing in the .json file: other than that, the | |
# model data isn't used so this should be safe (at least for now). | |
fakemodel = { | |
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor), | |
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor), | |
} | |
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab] | |
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff] | |
if hf_config_path.exists(): | |
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path) | |
elif orig_config_path.exists(): | |
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) | |
else: | |
raise ValueError('Unable to load metadata') | |
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) | |
vocab_factory = convert.VocabFactory(vocab_path) | |
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir) | |
convert.check_vocab_size(params, vocab) | |
return params, vocab, special_vocab | |
def handle_args(): | |
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF') | |
parser.add_argument('--input', '-i', type = Path, required = True, | |
help = 'Input GGMLv3 filename') | |
parser.add_argument('--output', '-o', type = Path, required = True, | |
help ='Output GGUF filename') | |
parser.add_argument('--name', | |
help = 'Set model name') | |
parser.add_argument('--desc', | |
help = 'Set model description') | |
parser.add_argument('--gqa', type = int, default = 1, | |
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') | |
parser.add_argument('--eps', default = '5.0e-06', | |
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') | |
parser.add_argument('--context-length', '-c', type=int, default = 2048, | |
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') | |
parser.add_argument('--model-metadata-dir', '-m', type = Path, | |
help ='Load HuggingFace/.pth vocab and metadata from the specified directory') | |
parser.add_argument("--vocab-dir", type=Path, | |
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") | |
parser.add_argument("--vocabtype", default="spm,hfft", | |
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)") | |
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") | |
return parser.parse_args() | |
def main(): | |
cfg = handle_args() | |
logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO) | |
logger.info(f'* Using config: {cfg}') | |
logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===') | |
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'): | |
logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') | |
data = np.memmap(cfg.input, mode = 'r') | |
model = GGMLModel() | |
logger.info('* Scanning GGML input file') | |
offset = model.load(data, 0) # noqa | |
logger.info(f'* GGML model hyperparameters: {model.hyperparameters}') | |
vocab_override = None | |
params_override = None | |
special_vocab = None | |
if cfg.model_metadata_dir is not None: | |
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters) | |
logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.') | |
logger.info(f'* Overriding params: {params_override}') | |
logger.info(f'* Overriding vocab: {vocab_override}') | |
logger.info(f'* Special vocab: {special_vocab}') | |
else: | |
logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') | |
if model.file_format == GGMLFormat.GGML: | |
logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') | |
converter = GGMLToGGUF( | |
model, data, cfg, | |
params_override = params_override, | |
vocab_override = vocab_override, | |
special_vocab = special_vocab | |
) | |
converter.save() | |
logger.info(f'* Successful completion. Output saved to: {cfg.output}') | |
if __name__ == '__main__': | |
main() | |