|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from sklearn.linear_model import LinearRegression |
|
|
|
|
|
np.random.seed(42) |
|
n_samples = 500 |
|
|
|
|
|
company_size = np.random.randint(50, 10000, n_samples) |
|
industry_risk = np.random.choice([1, 2, 3, 4, 5], n_samples) |
|
past_incidents = np.random.randint(0, 10, n_samples) |
|
security_measures = np.random.randint(1, 6, n_samples) |
|
compliance = np.random.choice([0, 1], n_samples) |
|
|
|
|
|
base_premium = 5000 |
|
premium = ( |
|
base_premium + (company_size * 0.5) + (industry_risk * 2000) + (past_incidents * 1500) |
|
- (security_measures * 1000) - (compliance * 3000) + np.random.normal(0, 2000, n_samples) |
|
) |
|
|
|
|
|
premium = np.clip(premium, 2000, None) |
|
|
|
|
|
data = pd.DataFrame({ |
|
"Company Size": company_size, |
|
"Industry Risk": industry_risk, |
|
"Past Incidents": past_incidents, |
|
"Security Measures": security_measures, |
|
"Compliance": compliance, |
|
"Premium": premium |
|
}) |
|
|
|
|
|
X = data[["Company Size", "Industry Risk", "Past Incidents", "Security Measures", "Compliance"]] |
|
y = data["Premium"] |
|
|
|
model = LinearRegression() |
|
model.fit(X, y) |
|
|
|
coefficients = pd.DataFrame({"Feature": X.columns, "Coefficient": model.coef_}) |
|
|
|
|
|
st.title("Cyber Insurance Premium Estimator") |
|
|
|
company_size_input = st.number_input("Company Size (Number of Employees)", min_value=50, max_value=10000, value=500) |
|
industry_risk_input = st.selectbox("Industry Risk Level", [1, 2, 3, 4, 5]) |
|
past_incidents_input = st.number_input("Past Cyber Incidents", min_value=0, max_value=10, value=2) |
|
security_measures_input = st.selectbox("Security Measures Rating", [1, 2, 3, 4, 5]) |
|
compliance_input = st.selectbox("Compliance Status", [0, 1], format_func=lambda x: "Compliant" if x == 1 else "Non-Compliant") |
|
|
|
if st.button("Calculate Premium"): |
|
input_data = np.array([[company_size_input, industry_risk_input, past_incidents_input, security_measures_input, compliance_input]]) |
|
predicted_premium = model.predict(input_data)[0] |
|
st.subheader(f"Estimated Premium: ${predicted_premium:,.2f}") |
|
|
|
st.subheader("Feature Importance") |
|
st.write(coefficients) |
|
|