EmbeddingGenerator-Medical / embedding_generator.py
Arpit-Bansal's picture
bug fix try
6edb88d
from huggingface_hub import login, from_pretrained_keras
import os
import glob
import time
import h5py
import numpy as np
# import pandas as pd
from PIL import Image
from tqdm import tqdm
import tensorflow as tf
from dotenv import load_dotenv
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
print("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
login(token=hf_token)
def load_model():
"""Load PathFoundation model from Hugging Face"""
print("Loading PathFoundation model...")
model = from_pretrained_keras("google/path-foundation")
infer = model.signatures["serving_default"]
print("Model loaded!")
return infer
def load_model():
"""Load PathFoundation model from Hugging Face"""
print("Loading PathFoundation model...")
import tensorflow as tf
import keras
from huggingface_hub import snapshot_download
# Download the model from HuggingFace
model_path = snapshot_download(repo_id="google/path-foundation")
# Load as TFSMLayer
model = keras.layers.TFSMLayer(
model_path,
call_endpoint='serving_default'
)
print("Model loaded!")
return model
def process_image(image_input, infer_function):
"""Process a single image and get embedding
Args:
image_input: Either a file path (str) or image data (bytes/BytesIO/numpy array)
infer_function: The model inference function
Returns:
Embedding vector or None if processing fails
"""
try:
# Handle different input types
if isinstance(image_input, str):
# It's a file path
img = Image.open(image_input).convert('RGB')
elif isinstance(image_input, bytes) or hasattr(image_input, 'read'):
# It's image data from frontend (bytes or BytesIO)
img = Image.open(image_input).convert('RGB')
elif isinstance(image_input, np.ndarray):
# It's already a numpy array
img = Image.fromarray(image_input.astype('uint8')).convert('RGB')
else:
raise ValueError(f"Unsupported image input type: {type(image_input)}")
# Resize to 224x224 if needed
if img.size != (224, 224):
img = img.resize((224, 224))
# Convert to tensor and normalize
tensor = tf.cast(tf.expand_dims(np.array(img), axis=0), tf.float32) / 255.0
# Get embedding
embeddings = infer_function(tf.constant(tensor))
embedding_vector = embeddings['output_0'].numpy().flatten()
return embedding_vector
except Exception as e:
print(f"Error processing image: {e}")
return None