ArneBinder's picture
full pipeline
25fcabc verified
raw
history blame
No virus
31.2 kB
import json
import logging
import os.path
from collections import defaultdict
from functools import partial
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import pandas as pd
from pie_modules.document.processing import tokenize_document
from pie_modules.documents import TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pie_modules.models import * # noqa: F403
from pie_modules.taskmodules import * # noqa: F403
from pytorch_ie import Pipeline
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pytorch_ie.models import * # noqa: F403
from pytorch_ie.taskmodules import * # noqa: F403
from rendering_utils import render_displacy, render_pretty_table
from transformers import AutoModel, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer
from vector_store import SimpleVectorStore
logger = logging.getLogger(__name__)
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"
DEFAULT_MODEL_NAME = "ArneBinder/sam-pointer-bart-base-v0.3"
DEFAULT_MODEL_REVISION = "76300f8e534e2fcf695f00cb49bba166739b8d8a"
# local path
# DEFAULT_MODEL_NAME = "models/dataset-sciarg/task-ner_re/v0.3/2024-05-28_23-33-46"
# DEFAULT_MODEL_REVISION = None
DEFAULT_EMBEDDING_MODEL_NAME = "allenai/scibert_scivocab_uncased"
def embed_text_annotations(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
text_layer_name: str,
) -> dict:
# to not modify the original document
document = document.copy()
# tokenize_document does not yet consider predictions, so we need to add them manually
document[text_layer_name].extend(document[text_layer_name].predictions.clear())
added_annotations = []
tokenizer_kwargs = {
"max_length": 512,
"stride": 64,
"truncation": True,
"return_overflowing_tokens": True,
}
tokenized_documents = tokenize_document(
document,
tokenizer=tokenizer,
result_document_type=TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
partition_layer="labeled_partitions",
added_annotations=added_annotations,
strict_span_conversion=False,
**tokenizer_kwargs,
)
# just tokenize again to get tensors in the correct format for the model
# TODO: fix for A34.txt from sciarg corpus
model_inputs = tokenizer(document.text, return_tensors="pt", **tokenizer_kwargs)
# this is added when using return_overflowing_tokens=True, but the model does not accept it
model_inputs.pop("overflow_to_sample_mapping", None)
assert len(model_inputs.encodings) == len(tokenized_documents)
model_output = model(**model_inputs)
# get embeddings for all text annotations
embeddings = {}
for batch_idx in range(len(model_output.last_hidden_state)):
text2tok_ann = added_annotations[batch_idx][text_layer_name]
tok2text_ann = {v: k for k, v in text2tok_ann.items()}
for tok_ann in tokenized_documents[batch_idx].labeled_spans:
# skip "empty" annotations
if tok_ann.start == tok_ann.end:
continue
# use the max pooling strategy to get a single embedding for the annotation text
embedding = model_output.last_hidden_state[batch_idx, tok_ann.start : tok_ann.end].max(
dim=0
)[0]
text_ann = tok2text_ann[tok_ann]
if text_ann in embeddings:
logger.warning(
f"Overwriting embedding for annotation '{text_ann}' (do you use striding?)"
)
embeddings[text_ann] = embedding
return embeddings
def annotate(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
pipeline: Pipeline,
embedding_model: Optional[PreTrainedModel] = None,
embedding_tokenizer: Optional[PreTrainedTokenizer] = None,
) -> None:
# execute prediction pipeline
pipeline(document)
if embedding_model is not None and embedding_tokenizer is not None:
adu_embeddings = embed_text_annotations(
document=document,
model=embedding_model,
tokenizer=embedding_tokenizer,
text_layer_name="labeled_spans",
)
# convert keys to str because JSON keys must be strings
adu_embeddings_dict = {str(k._id): v.detach().tolist() for k, v in adu_embeddings.items()}
document.metadata["embeddings"] = adu_embeddings_dict
else:
gr.Warning(
"No embedding model provided. Skipping embedding extraction. You can load an embedding "
"model in the 'Model Configuration' section."
)
def render_annotated_document(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
render_with: str,
render_kwargs_json: str,
) -> str:
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(document, **render_kwargs)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(document, **render_kwargs)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
def add_to_index(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
processed_documents: dict,
vector_store: SimpleVectorStore,
) -> None:
try:
if document.id in processed_documents:
gr.Warning(f"Document '{document.id}' already in index. Overwriting.")
# save the processed document to the index
processed_documents[document.id] = document
# save the embeddings to the vector store
for adu_id, embedding in document.metadata["embeddings"].items():
vector_store.save((document.id, adu_id), embedding)
gr.Info(
f"Added document {document.id} to index (index contains {len(processed_documents)} "
f"documents and {len(vector_store)} embeddings)."
)
except Exception as e:
raise gr.Error(f"Failed to add document {document.id} to index: {e}")
def process_text(
text: str,
doc_id: str,
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
vector_store: SimpleVectorStore,
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
try:
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(
id=doc_id, text=text, metadata={}
)
# add single partition from the whole text (the model only considers text in partitions)
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
# annotate the document
annotate(
document=document,
pipeline=models[0],
embedding_model=models[1],
embedding_tokenizer=models[2],
)
# add the document to the index
add_to_index(document, processed_documents, vector_store)
return document
except Exception as e:
raise gr.Error(f"Failed to process text: {e}")
def wrapped_process_text(
text: str,
doc_id: str,
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
vector_store: SimpleVectorStore,
) -> Tuple[dict, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions]:
document = process_text(
text=text,
doc_id=doc_id,
models=models,
processed_documents=processed_documents,
vector_store=vector_store,
)
# Return as dict and document to avoid serialization issues
return document.asdict(), document
def process_uploaded_file(
file_names: List[str],
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]],
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
vector_store: SimpleVectorStore,
) -> None:
try:
for file_name in file_names:
if file_name.lower().endswith(".txt"):
# read the file content
with open(file_name, "r", encoding="utf-8") as f:
text = f.read()
base_file_name = os.path.basename(file_name)
gr.Info(f"Processing file '{base_file_name}' ...")
process_text(text, base_file_name, models, processed_documents, vector_store)
else:
raise gr.Error(f"Unsupported file format: {file_name}")
except Exception as e:
raise gr.Error(f"Failed to process uploaded files: {e}")
def _get_annotation_from_document(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
annotation_id: str,
annotation_layer: str,
) -> LabeledSpan:
# use predictions
annotations = document[annotation_layer].predictions
id2annotation = {str(annotation._id): annotation for annotation in annotations}
annotation = id2annotation.get(annotation_id)
if annotation is None:
raise gr.Error(
f"annotation '{annotation_id}' not found in document '{document.id}'. Available "
f"annotations: {id2annotation}"
)
return annotation
def _get_annotation(
doc_id: str,
annotation_id: str,
annotation_layer: str,
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
) -> LabeledSpan:
document = processed_documents.get(doc_id)
if document is None:
raise gr.Error(
f"Document '{doc_id}' not found in index. Available documents: {list(processed_documents)}"
)
return _get_annotation_from_document(document, annotation_id, annotation_layer)
def _get_similar_entries_from_vector_store(
ref_annotation_id: str,
ref_document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
vector_store: SimpleVectorStore[Tuple[str, str]],
**retrieval_kwargs,
) -> List[Tuple[Tuple[str, str], float]]:
embeddings = ref_document.metadata["embeddings"]
ref_embedding = embeddings.get(ref_annotation_id)
if ref_embedding is None:
raise gr.Error(
f"Embedding for annotation '{ref_annotation_id}' not found in metadata of "
f"document '{ref_document.id}'. Annotations with embeddings: {list(embeddings)}"
)
try:
similar_entries = vector_store.retrieve_similar(
ref_id=(ref_document.id, ref_annotation_id), **retrieval_kwargs
)
except Exception as e:
raise gr.Error(f"Failed to retrieve similar ADUs: {e}")
return similar_entries
def get_similar_adus(
ref_annotation_id: str,
ref_document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
vector_store: SimpleVectorStore,
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
min_similarity: float,
) -> pd.DataFrame:
similar_entries = _get_similar_entries_from_vector_store(
ref_annotation_id=ref_annotation_id,
ref_document=ref_document,
vector_store=vector_store,
min_similarity=min_similarity,
)
similar_annotations = [
_get_annotation(
doc_id=doc_id,
annotation_id=annotation_id,
annotation_layer="labeled_spans",
processed_documents=processed_documents,
)
for (doc_id, annotation_id), _ in similar_entries
]
df = pd.DataFrame(
[
# unpack the tuple (doc_id, annotation_id) to separate columns
# and add the similarity score and the text of the annotation
(doc_id, annotation_id, score, str(annotation))
for ((doc_id, annotation_id), score), annotation in zip(
similar_entries, similar_annotations
)
],
columns=["doc_id", "adu_id", "sim_score", "text"],
)
return df
def get_relevant_adus(
ref_annotation_id: str,
ref_document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
vector_store: SimpleVectorStore,
processed_documents: dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
min_similarity: float,
) -> pd.DataFrame:
similar_entries = _get_similar_entries_from_vector_store(
ref_annotation_id=ref_annotation_id,
ref_document=ref_document,
vector_store=vector_store,
min_similarity=min_similarity,
)
ref_annotation = _get_annotation(
doc_id=ref_document.id,
annotation_id=ref_annotation_id,
annotation_layer="labeled_spans",
processed_documents=processed_documents,
)
result = []
for (doc_id, annotation_id), score in similar_entries:
# skip entries from the same document
if doc_id == ref_document.id:
continue
document = processed_documents[doc_id]
tail2rels = defaultdict(list)
head2rels = defaultdict(list)
for rel in document.binary_relations.predictions:
# skip non-argumentative relations
if rel.label in ["parts_of_same", "semantically_same"]:
continue
head2rels[rel.head].append(rel)
tail2rels[rel.tail].append(rel)
id2annotation = {
str(annotation._id): annotation for annotation in document.labeled_spans.predictions
}
annotation = id2annotation.get(annotation_id)
# note: we do not need to check if the annotation is different from the reference annotation,
# because they com from different documents and we already skip entries from the same document
for rel in head2rels.get(annotation, []):
result.append(
{
"doc_id": doc_id,
"reference_adu": str(annotation),
"sim_score": score,
"rel_score": rel.score,
"relation": rel.label,
"text": str(rel.tail),
}
)
# define column order
df = pd.DataFrame(
result, columns=["text", "relation", "doc_id", "reference_adu", "sim_score", "rel_score"]
)
return df
def open_accordion():
return gr.Accordion(open=True)
def close_accordion():
return gr.Accordion(open=False)
def load_argumentation_model(model_name: str, revision: Optional[str] = None) -> Pipeline:
try:
model = AutoPipeline.from_pretrained(
model_name,
device=-1,
num_workers=0,
taskmodule_kwargs=dict(revision=revision),
model_kwargs=dict(revision=revision),
)
except Exception as e:
raise gr.Error(f"Failed to load argumentation model: {e}")
gr.Info(f"Loaded argumentation model: model_name={model_name}, revision={revision})")
return model
def load_embedding_model(model_name: str) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
try:
embedding_model = AutoModel.from_pretrained(model_name)
embedding_tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
raise gr.Error(f"Failed to load embedding model: {e}")
gr.Info(f"Loaded embedding model: model_name={model_name})")
return embedding_model, embedding_tokenizer
def load_models(
model_name: str, revision: Optional[str] = None, embedding_model_name: Optional[str] = None
) -> Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]]:
argumentation_model = load_argumentation_model(model_name, revision)
embedding_model = None
embedding_tokenizer = None
if embedding_model_name is not None and embedding_model_name.strip():
embedding_model, embedding_tokenizer = load_embedding_model(embedding_model_name)
return argumentation_model, embedding_model, embedding_tokenizer
def update_processed_documents_df(
processed_documents: dict[str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions]
) -> pd.DataFrame:
df = pd.DataFrame(
[
(
doc_id,
len(document.labeled_spans.predictions),
len(document.binary_relations.predictions),
)
for doc_id, document in processed_documents.items()
],
columns=["doc_id", "num_adus", "num_relations"],
)
return df
def select_processed_document(
evt: gr.SelectData,
processed_documents_df: pd.DataFrame,
processed_documents: Dict[
str, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
],
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
row_idx, col_idx = evt.index
doc_id = processed_documents_df.iloc[row_idx]["doc_id"]
gr.Info(f"Select document: {doc_id}")
doc = processed_documents[doc_id]
return doc
def main():
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."
print("Loading models ...")
argumentation_model, embedding_model, embedding_tokenizer = load_models(
model_name=DEFAULT_MODEL_NAME,
revision=DEFAULT_MODEL_REVISION,
embedding_model_name=DEFAULT_EMBEDDING_MODEL_NAME,
)
default_render_kwargs = {
"entity_options": {
# we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
"colors": {
"own_claim".upper(): "#009933",
"background_claim".upper(): "#99ccff",
"data".upper(): "#993399",
}
},
"colors_hover": {
"selected": "#ffa",
# "tail": "#aff",
"tail": {
# green
"supports": "#9f9",
# red
"contradicts": "#f99",
# do not highlight
"parts_of_same": None,
},
"head": None, # "#faf",
"other": None,
},
}
with gr.Blocks() as demo:
processed_documents_state = gr.State(dict())
vector_store_state = gr.State(SimpleVectorStore())
# wrap the pipeline and the embedding model/tokenizer in a tuple to avoid that it gets called
models_state = gr.State((argumentation_model, embedding_model, embedding_tokenizer))
with gr.Row():
with gr.Column(scale=1):
doc_id = gr.Textbox(
label="Document ID",
value="user_input",
)
doc_text = gr.Textbox(
label="Text",
lines=20,
value=example_text,
)
with gr.Accordion("Model Configuration", open=False):
model_name = gr.Textbox(
label="Model Name",
value=DEFAULT_MODEL_NAME,
)
model_revision = gr.Textbox(
label="Model Revision",
value=DEFAULT_MODEL_REVISION,
)
embedding_model_name = gr.Textbox(
label=f"Embedding Model Name (e.g. {DEFAULT_EMBEDDING_MODEL_NAME})",
value="",
)
load_models_btn = gr.Button("Load Models")
load_models_btn.click(
fn=load_models,
inputs=[model_name, model_revision, embedding_model_name],
outputs=models_state,
)
predict_btn = gr.Button("Analyse")
document_state = gr.State()
with gr.Column(scale=1):
with gr.Accordion("See plain result ...", open=False) as output_accordion:
document_json = gr.JSON(label="Model Output")
with gr.Accordion("Render Options", open=False):
render_as = gr.Dropdown(
label="Render with",
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
value=RENDER_WITH_DISPLACY,
)
render_kwargs = gr.Textbox(
label="Render Arguments",
lines=5,
value=json.dumps(default_render_kwargs, indent=2),
)
render_btn = gr.Button("Re-render")
rendered_output = gr.HTML(label="Rendered Output")
# add_to_index_btn = gr.Button("Add current result to Index")
upload_btn = gr.UploadButton(
"Upload & Analyse Documents", file_types=["text"], file_count="multiple"
)
with gr.Column(scale=1):
with gr.Accordion("Indexed Documents", open=False):
processed_documents_df = gr.DataFrame(
headers=["id", "num_adus", "num_relations"],
interactive=False,
)
with gr.Accordion("Reference ADU", open=False):
reference_adu_id = gr.Textbox(label="ID", elem_id="reference_adu_id")
reference_adu_text = gr.Textbox(label="Text")
with gr.Accordion("Retrieval Configuration", open=False):
min_similarity = gr.Slider(
label="Minimum Similarity",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
retrieve_similar_adus_btn = gr.Button("Retrieve similar ADUs")
similar_adus = gr.DataFrame(headers=["doc_id", "adu_id", "score", "text"])
# retrieve_relevant_adus_btn = gr.Button("Retrieve relevant ADUs")
relevant_adus = gr.DataFrame(
label="Relevant ADUs from other documents",
headers=[
"text",
"relation",
"doc_id",
"reference_adu",
"sim_score",
"rel_score",
],
)
render_event_kwargs = dict(
fn=render_annotated_document,
inputs=[document_state, render_as, render_kwargs],
outputs=rendered_output,
)
predict_btn.click(fn=open_accordion, inputs=[], outputs=[output_accordion]).then(
fn=wrapped_process_text,
inputs=[doc_text, doc_id, models_state, processed_documents_state, vector_store_state],
outputs=[document_json, document_state],
api_name="predict",
).success(
fn=update_processed_documents_df,
inputs=[processed_documents_state],
outputs=[processed_documents_df],
)
render_btn.click(**render_event_kwargs, api_name="render")
document_state.change(
fn=lambda doc: doc.asdict(),
inputs=[document_state],
outputs=[document_json],
).success(close_accordion, inputs=[], outputs=[output_accordion]).then(
**render_event_kwargs
)
upload_btn.upload(
fn=process_uploaded_file,
inputs=[upload_btn, models_state, processed_documents_state, vector_store_state],
outputs=[],
).success(
fn=update_processed_documents_df,
inputs=[processed_documents_state],
outputs=[processed_documents_df],
)
processed_documents_df.select(
select_processed_document,
inputs=[processed_documents_df, processed_documents_state],
outputs=[document_state],
)
retrieve_relevant_adus_event_kwargs = dict(
fn=get_relevant_adus,
inputs=[
reference_adu_id,
document_state,
vector_store_state,
processed_documents_state,
min_similarity,
],
outputs=[relevant_adus],
)
reference_adu_id.change(
fn=partial(_get_annotation_from_document, annotation_layer="labeled_spans"),
inputs=[document_state, reference_adu_id],
outputs=[reference_adu_text],
).success(**retrieve_relevant_adus_event_kwargs)
retrieve_similar_adus_btn.click(
fn=get_similar_adus,
inputs=[
reference_adu_id,
document_state,
vector_store_state,
processed_documents_state,
min_similarity,
],
outputs=[similar_adus],
)
# retrieve_relevant_adus_btn.click(
# **retrieve_relevant_adus_event_kwargs
# )
js = """
() => {
function maybeSetColor(entity, colorAttributeKey, colorDictKey) {
var color = entity.getAttribute('data-color-' + colorAttributeKey);
// if color is a json string, parse it and use the value at colorDictKey
try {
const colors = JSON.parse(color);
color = colors[colorDictKey];
} catch (e) {}
if (color) {
entity.style.backgroundColor = color;
entity.style.color = '#000';
}
}
function highlightRelationArguments(entityId) {
const entities = document.querySelectorAll('.entity');
// reset all entities
entities.forEach(entity => {
const color = entity.getAttribute('data-color-original');
entity.style.backgroundColor = color;
entity.style.color = '';
});
if (entityId !== null) {
var visitedEntities = new Set();
// highlight selected entity
const selectedEntity = document.getElementById(entityId);
if (selectedEntity) {
const label = selectedEntity.getAttribute('data-label');
maybeSetColor(selectedEntity, 'selected', label);
visitedEntities.add(selectedEntity);
}
// highlight tails
const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails'));
relationTailsAndLabels.forEach(relationTail => {
const tailEntity = document.getElementById(relationTail['entity-id']);
if (tailEntity) {
const label = relationTail['label'];
maybeSetColor(tailEntity, 'tail', label);
visitedEntities.add(tailEntity);
}
});
// highlight heads
const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads'));
relationHeadsAndLabels.forEach(relationHead => {
const headEntity = document.getElementById(relationHead['entity-id']);
if (headEntity) {
const label = relationHead['label'];
maybeSetColor(headEntity, 'head', label);
visitedEntities.add(headEntity);
}
});
// highlight other entities
entities.forEach(entity => {
if (!visitedEntities.has(entity)) {
const label = entity.getAttribute('data-label');
maybeSetColor(entity, 'other', label);
}
});
}
}
function setReferenceAduId(entityId) {
// get the textarea element that holds the reference adu id
let referenceAduIdDiv = document.querySelector('#reference_adu_id textarea');
// set the value of the input field
referenceAduIdDiv.value = entityId;
// trigger an input event to update the state
var event = new Event('input');
referenceAduIdDiv.dispatchEvent(event);
}
const entities = document.querySelectorAll('.entity');
entities.forEach(entity => {
const alreadyHasListener = entity.getAttribute('data-has-listener');
if (alreadyHasListener) {
return;
}
entity.addEventListener('mouseover', () => {
highlightRelationArguments(entity.id);
setReferenceAduId(entity.id);
});
entity.addEventListener('mouseout', () => {
highlightRelationArguments(null);
});
entity.setAttribute('data-has-listener', 'true');
});
}
"""
rendered_output.change(fn=None, js=js, inputs=[], outputs=[])
demo.launch()
if __name__ == "__main__":
# configure logging
logging.basicConfig()
main()