ArneBinder's picture
new demo setup with langchain retriever
2cc87ec verified
raw
history blame
16.1 kB
import json
import logging
from typing import Iterable, Optional, Sequence, Union
import gradio as gr
import pandas as pd
from pie_datasets import Dataset, IterableDataset, load_dataset
from pie_modules.document.processing import RegexPartitioner, SpansViaRelationMerger
from pytorch_ie import Pipeline
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import (
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
)
from typing_extensions import Protocol
from src.langchain_modules import DocumentAwareSpanRetriever
from src.langchain_modules.span_retriever import (
DocumentAwareSpanRetrieverWithRelations,
_parse_config,
)
logger = logging.getLogger(__name__)
def annotate_document(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
argumentation_model: Pipeline,
handle_parts_of_same: bool = False,
) -> Union[
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
]:
"""Annotate a document with the provided pipeline.
Args:
document: The document to annotate.
argumentation_model: The pipeline to use for annotation.
handle_parts_of_same: Whether to merge spans that are part of the same entity into a single multi span.
"""
# execute prediction pipeline
argumentation_model(document)
if handle_parts_of_same:
merger = SpansViaRelationMerger(
relation_layer="binary_relations",
link_relation_label="parts_of_same",
create_multi_spans=True,
result_document_type=TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions,
result_field_mapping={
"labeled_spans": "labeled_multi_spans",
"binary_relations": "binary_relations",
"labeled_partitions": "labeled_partitions",
},
)
document = merger(document)
return document
def create_document(
text: str, doc_id: str, split_regex: Optional[str] = None
) -> TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions:
"""Create a TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions from the provided
text.
Parameters:
text: The text to process.
doc_id: The ID of the document.
split_regex: A regular expression pattern to use for splitting the text into partitions.
Returns:
The processed document.
"""
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(
id=doc_id, text=text, metadata={}
)
if split_regex is not None:
partitioner = RegexPartitioner(
pattern=split_regex, partition_layer_name="labeled_partitions"
)
document = partitioner(document)
else:
# add single partition from the whole text (the model only considers text in partitions)
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
return document
def add_annotated_pie_documents(
retriever: DocumentAwareSpanRetriever,
pie_documents: Sequence[TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions],
use_predicted_annotations: bool,
verbose: bool = False,
) -> None:
if verbose:
gr.Info(f"Create span embeddings for {len(pie_documents)} documents...")
num_docs_before = len(retriever.docstore)
retriever.add_pie_documents(pie_documents, use_predicted_annotations=use_predicted_annotations)
# number of documents that were overwritten
num_overwritten_docs = num_docs_before + len(pie_documents) - len(retriever.docstore)
# warn if documents were overwritten
if num_overwritten_docs > 0:
gr.Warning(f"{num_overwritten_docs} documents were overwritten.")
def process_texts(
texts: Iterable[str],
doc_ids: Iterable[str],
argumentation_model: Pipeline,
retriever: DocumentAwareSpanRetriever,
split_regex_escaped: Optional[str],
handle_parts_of_same: bool = False,
verbose: bool = False,
) -> None:
# check that doc_ids are unique
if len(set(doc_ids)) != len(list(doc_ids)):
raise gr.Error("Document IDs must be unique.")
pie_documents = [
create_document(text=text, doc_id=doc_id, split_regex=split_regex_escaped)
for text, doc_id in zip(texts, doc_ids)
]
if verbose:
gr.Info(f"Annotate {len(pie_documents)} documents...")
pie_documents = [
annotate_document(
document=pie_document,
argumentation_model=argumentation_model,
handle_parts_of_same=handle_parts_of_same,
)
for pie_document in pie_documents
]
add_annotated_pie_documents(
retriever=retriever,
pie_documents=pie_documents,
use_predicted_annotations=True,
verbose=verbose,
)
def add_annotated_pie_documents_from_dataset(
retriever: DocumentAwareSpanRetriever, verbose: bool = False, **load_dataset_kwargs
) -> None:
try:
gr.Info(
"Loading PIE dataset with parameters:\n" + json.dumps(load_dataset_kwargs, indent=2)
)
dataset = load_dataset(**load_dataset_kwargs)
if not isinstance(dataset, (Dataset, IterableDataset)):
raise gr.Error("Loaded dataset is not of type PIE (Iterable)Dataset.")
dataset_converted = dataset.to_document_type(
TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
)
add_annotated_pie_documents(
retriever=retriever,
pie_documents=dataset_converted,
use_predicted_annotations=False,
verbose=verbose,
)
except Exception as e:
raise gr.Error(f"Failed to load dataset: {e}")
def load_argumentation_model(
model_name: str,
revision: Optional[str] = None,
device: str = "cpu",
) -> Pipeline:
try:
# the Pipeline class expects an integer for the device
if device == "cuda":
pipeline_device = 0
elif device.startswith("cuda:"):
pipeline_device = int(device.split(":")[1])
elif device == "cpu":
pipeline_device = -1
else:
raise gr.Error(f"Invalid device: {device}")
model = AutoPipeline.from_pretrained(
model_name,
device=pipeline_device,
num_workers=0,
taskmodule_kwargs=dict(revision=revision),
model_kwargs=dict(revision=revision),
)
gr.Info(
f"Loaded argumentation model: model_name={model_name}, revision={revision}, device={device}"
)
except Exception as e:
raise gr.Error(f"Failed to load argumentation model: {e}")
return model
def load_retriever(
retriever_config: str,
config_format: str,
device: str = "cpu",
previous_retriever: Optional[DocumentAwareSpanRetrieverWithRelations] = None,
) -> DocumentAwareSpanRetrieverWithRelations:
try:
retriever_config = _parse_config(retriever_config, format=config_format)
# set device for the embeddings pipeline
retriever_config["vectorstore"]["embedding"]["pipeline_kwargs"]["device"] = device
result = DocumentAwareSpanRetrieverWithRelations.instantiate_from_config(retriever_config)
# if a previous retriever is provided, load all documents and vectors from the previous retriever
if previous_retriever is not None:
# documents
all_doc_ids = list(previous_retriever.docstore.yield_keys())
gr.Info(f"Storing {len(all_doc_ids)} documents from previous retriever...")
all_docs = previous_retriever.docstore.mget(all_doc_ids)
result.docstore.mset([(doc.id, doc) for doc in all_docs])
# spans (with vectors)
all_span_ids = list(previous_retriever.vectorstore.yield_keys())
all_spans = previous_retriever.vectorstore.mget(all_span_ids)
result.vectorstore.mset([(span.id, span) for span in all_spans])
gr.Info("Retriever loaded successfully.")
return result
except Exception as e:
raise gr.Error(f"Failed to load retriever: {e}")
def retrieve_similar_spans(
retriever: DocumentAwareSpanRetriever,
query_span_id: str,
**kwargs,
) -> pd.DataFrame:
if not query_span_id.strip():
raise gr.Error("No query span selected.")
try:
retrieval_result = retriever.invoke(input=query_span_id, **kwargs)
records = []
for similar_span_doc in retrieval_result:
pie_doc, metadata = retriever.docstore.unwrap_with_metadata(similar_span_doc)
span_ann = metadata["attached_span"]
records.append(
{
"doc_id": pie_doc.id,
"span_id": similar_span_doc.id,
"score": metadata["relevance_score"],
"label": span_ann.label,
"text": str(span_ann),
}
)
return (
pd.DataFrame(records, columns=["doc_id", "score", "label", "text", "span_id"])
.sort_values(by="score", ascending=False)
.round(3)
)
except Exception as e:
raise gr.Error(f"Failed to retrieve similar ADUs: {e}")
def retrieve_relevant_spans(
retriever: DocumentAwareSpanRetriever,
query_span_id: str,
relation_label_mapping: Optional[dict[str, str]] = None,
**kwargs,
) -> pd.DataFrame:
if not query_span_id.strip():
raise gr.Error("No query span selected.")
try:
relation_label_mapping = relation_label_mapping or {}
retrieval_result = retriever.invoke(input=query_span_id, return_related=True, **kwargs)
records = []
for relevant_span_doc in retrieval_result:
pie_doc, metadata = retriever.docstore.unwrap_with_metadata(relevant_span_doc)
span_ann = metadata["attached_span"]
tail_span_ann = metadata["attached_tail_span"]
mapped_relation_label = relation_label_mapping.get(
metadata["relation_label"], metadata["relation_label"]
)
records.append(
{
"doc_id": pie_doc.id,
"type": mapped_relation_label,
"rel_score": metadata["relation_score"],
"text": str(tail_span_ann),
"span_id": relevant_span_doc.id,
"label": tail_span_ann.label,
"ref_score": metadata["relevance_score"],
"ref_label": span_ann.label,
"ref_text": str(span_ann),
"ref_span_id": metadata["head_id"],
}
)
return (
pd.DataFrame(
records,
columns=[
"type",
# omitted for now, we get no valid relation scores for the generative model
# "rel_score",
"ref_score",
"label",
"text",
"ref_label",
"ref_text",
"doc_id",
"span_id",
"ref_span_id",
],
)
.sort_values(by=["ref_score"], ascending=False)
.round(3)
)
except Exception as e:
raise gr.Error(f"Failed to retrieve relevant ADUs: {e}")
class RetrieverCallable(Protocol):
def __call__(
self,
retriever: DocumentAwareSpanRetriever,
query_span_id: str,
**kwargs,
) -> Optional[pd.DataFrame]:
pass
def _retrieve_for_all_spans(
retriever: DocumentAwareSpanRetriever,
query_doc_id: str,
retrieve_func: RetrieverCallable,
query_span_id_column: str = "query_span_id",
**kwargs,
) -> Optional[pd.DataFrame]:
if not query_doc_id.strip():
raise gr.Error("No query document selected.")
try:
span_id2idx = retriever.get_span_id2idx_from_doc(query_doc_id)
gr.Info(f"Retrieving results for {len(span_id2idx)} ADUs in document {query_doc_id}...")
span_results = {
query_span_id: retrieve_func(
retriever=retriever,
query_span_id=query_span_id,
**kwargs,
)
for query_span_id in span_id2idx.keys()
}
span_results_not_empty = {
query_span_id: df
for query_span_id, df in span_results.items()
if df is not None and not df.empty
}
# add column with query_span_id
for query_span_id, query_span_result in span_results_not_empty.items():
query_span_result[query_span_id_column] = query_span_id
if len(span_results_not_empty) == 0:
gr.Info(f"No results found for any ADU in document {query_doc_id}.")
return None
else:
result = pd.concat(span_results_not_empty.values(), ignore_index=True)
gr.Info(f"Retrieved {len(result)} ADUs for document {query_doc_id}.")
return result
except Exception as e:
raise gr.Error(
f'Failed to retrieve results for all ADUs in document "{query_doc_id}": {e}'
)
def retrieve_all_similar_spans(
retriever: DocumentAwareSpanRetriever,
query_doc_id: str,
**kwargs,
) -> Optional[pd.DataFrame]:
return _retrieve_for_all_spans(
retriever=retriever,
query_doc_id=query_doc_id,
retrieve_func=retrieve_similar_spans,
**kwargs,
)
def retrieve_all_relevant_spans(
retriever: DocumentAwareSpanRetriever,
query_doc_id: str,
**kwargs,
) -> Optional[pd.DataFrame]:
return _retrieve_for_all_spans(
retriever=retriever,
query_doc_id=query_doc_id,
retrieve_func=retrieve_relevant_spans,
**kwargs,
)
class RetrieverForAllSpansCallable(Protocol):
def __call__(
self,
retriever: DocumentAwareSpanRetriever,
query_doc_id: str,
**kwargs,
) -> Optional[pd.DataFrame]:
pass
def _retrieve_for_all_documents(
retriever: DocumentAwareSpanRetriever,
retrieve_func: RetrieverForAllSpansCallable,
query_doc_id_column: str = "query_doc_id",
**kwargs,
) -> Optional[pd.DataFrame]:
try:
all_doc_ids = list(retriever.docstore.yield_keys())
gr.Info(f"Retrieving results for {len(all_doc_ids)} documents...")
doc_results = {
doc_id: retrieve_func(retriever=retriever, query_doc_id=doc_id, **kwargs)
for doc_id in all_doc_ids
}
doc_results_not_empty = {
doc_id: df for doc_id, df in doc_results.items() if df is not None and not df.empty
}
# add column with query_doc_id
for doc_id, doc_result in doc_results_not_empty.items():
doc_result[query_doc_id_column] = doc_id
if len(doc_results_not_empty) == 0:
gr.Info("No results found for any document.")
return None
else:
result = pd.concat(doc_results_not_empty, ignore_index=True)
gr.Info(f"Retrieved {len(result)} ADUs for all documents.")
return result
except Exception as e:
raise gr.Error(f"Failed to retrieve results for all documents: {e}")
def retrieve_all_similar_spans_for_all_documents(
retriever: DocumentAwareSpanRetriever,
**kwargs,
) -> Optional[pd.DataFrame]:
return _retrieve_for_all_documents(
retriever=retriever,
retrieve_func=retrieve_all_similar_spans,
**kwargs,
)
def retrieve_all_relevant_spans_for_all_documents(
retriever: DocumentAwareSpanRetriever,
**kwargs,
) -> Optional[pd.DataFrame]:
return _retrieve_for_all_documents(
retriever=retriever,
retrieve_func=retrieve_all_relevant_spans,
**kwargs,
)