PredictDOTProjecc / MLmodel.py
Arnaudding001's picture
Upload 2 files
14db87c
raw
history blame
1.42 kB
import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.impute import SimpleImputer
import re
from sklearn.preprocessing import StandardScaler
class PrepProcesor(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.ageImputer = SimpleImputer()
self.ageImputer.fit(X[['Locked_period']])
return self
def transform(self, X, y=None):
X['Locked_period'] = self.ageImputer.transform(X[['Locked_period']])
# X['CabinClass'] = X['Cabin'].fillna('M').apply(lambda x: str(x).replace(" ", "")).apply(lambda x: re.sub(r'[^a-zA-Z]', '', x))
# X['CabinNumber'] = X['Cabin'].fillna('M').apply(lambda x: str(x).replace(" ", "")).apply(lambda x: re.sub(r'[^0-9]', '', x)).replace('', 0)
# X['Embarked'] = X['Embarked'].fillna('M')
X = StandardScaler.fit_transform(X)
#X = X.drop(['PassengerId', 'Name', 'Ticket','Cabin'], axis=1)
return X
columns = ['Wallet_distribution', 'Whale_anomalie_activities', 'Locked_period', 'Operation_duration', 'PR_articles', 'Decentralized_transaction','twitter_followers_growthrate','unique_address_growthrate', 'month_transaction_growthrate','github_update', 'code_review_report', 'publicChain_safety' , 'investedProjects','token_price', 'token_voltality_overDot', 'negative', 'neutre', 'positive', 'KOL_comments', 'media_negatifReport']