Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-xl", trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-xl", pad_token_id=tokenizer.eos_token_id)
|
9 |
+
model.to(device)
|
10 |
+
|
11 |
+
|
12 |
+
def predict(input, history=None):
|
13 |
+
if history is None:
|
14 |
+
history = []
|
15 |
+
response, history = model.chat(tokenizer, input, history)
|
16 |
+
return history, history
|
17 |
+
|
18 |
+
|
19 |
+
with gr.Blocks() as demo:
|
20 |
+
gr.Markdown('''## ArikGPT - Trained on a dataset of chats, jokes and news in the Hebrew language''')
|
21 |
+
state = gr.State([])
|
22 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=400)
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column(scale=4):
|
25 |
+
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
|
26 |
+
with gr.Column(scale=1):
|
27 |
+
button = gr.Button("Generate")
|
28 |
+
txt.submit(predict, [txt, state], [chatbot, state])
|
29 |
+
button.click(predict, [txt, state], [chatbot, state])
|
30 |
+
|
31 |
+
demo.queue().launch()
|
32 |
+
|
33 |
+
# Based on EleutherAI's gpt-neo 1.37B params
|