Arifzyn commited on
Commit
43fc111
1 Parent(s): 990098b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +326 -0
app.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import time
4
+ import json
5
+ import base64
6
+ import os
7
+ from io import BytesIO
8
+ import html
9
+ import re
10
+
11
+ class Prodia:
12
+ def __init__(self, api_key, base=None):
13
+ self.base = base or "https://api.prodia.com/v1"
14
+ self.headers = {
15
+ "X-Prodia-Key": api_key
16
+ }
17
+
18
+ def generate(self, params):
19
+ response = self._post(f"{self.base}/sd/generate", params)
20
+ return response.json()
21
+
22
+ def transform(self, params):
23
+ response = self._post(f"{self.base}/sd/transform", params)
24
+ return response.json()
25
+
26
+ def controlnet(self, params):
27
+ response = self._post(f"{self.base}/sd/controlnet", params)
28
+ return response.json()
29
+
30
+ def get_job(self, job_id):
31
+ response = self._get(f"{self.base}/job/{job_id}")
32
+ return response.json()
33
+
34
+ def wait(self, job):
35
+ job_result = job
36
+
37
+ while job_result['status'] not in ['succeeded', 'failed']:
38
+ time.sleep(0.25)
39
+ job_result = self.get_job(job['job'])
40
+
41
+ return job_result
42
+
43
+ def list_models(self):
44
+ response = self._get(f"{self.base}/sd/models")
45
+ return response.json()
46
+
47
+ def list_samplers(self):
48
+ response = self._get(f"{self.base}/sd/samplers")
49
+ return response.json()
50
+
51
+ def _post(self, url, params):
52
+ headers = {
53
+ **self.headers,
54
+ "Content-Type": "application/json"
55
+ }
56
+ response = requests.post(url, headers=headers, data=json.dumps(params))
57
+
58
+ if response.status_code != 200:
59
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
60
+
61
+ return response
62
+
63
+ def _get(self, url):
64
+ response = requests.get(url, headers=self.headers)
65
+
66
+ if response.status_code != 200:
67
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
68
+
69
+ return response
70
+
71
+
72
+ def image_to_base64(image):
73
+ # Convert the image to bytes
74
+ buffered = BytesIO()
75
+ image.save(buffered, format="PNG") # You can change format to PNG if needed
76
+
77
+ # Encode the bytes to base64
78
+ img_str = base64.b64encode(buffered.getvalue())
79
+
80
+ return img_str.decode('utf-8') # Convert bytes to string
81
+
82
+
83
+ def remove_id_and_ext(text):
84
+ text = re.sub(r'\[.*\]$', '', text)
85
+ extension = text[-12:].strip()
86
+ if extension == "safetensors":
87
+ text = text[:-13]
88
+ elif extension == "ckpt":
89
+ text = text[:-4]
90
+ return text
91
+
92
+
93
+ def get_data(text):
94
+ results = {}
95
+ patterns = {
96
+ 'prompt': r'(.*)',
97
+ 'negative_prompt': r'Negative prompt: (.*)',
98
+ 'steps': r'Steps: (\d+),',
99
+ 'seed': r'Seed: (\d+),',
100
+ 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
101
+ 'model': r'Model:\s*([^\s,]+)',
102
+ 'cfg_scale': r'CFG scale:\s*([\d\.]+)',
103
+ 'size': r'Size:\s*([0-9]+x[0-9]+)'
104
+ }
105
+ for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
106
+ match = re.search(patterns[key], text)
107
+ if match:
108
+ results[key] = match.group(1)
109
+ else:
110
+ results[key] = None
111
+ if results['size'] is not None:
112
+ w, h = results['size'].split("x")
113
+ results['w'] = w
114
+ results['h'] = h
115
+ else:
116
+ results['w'] = None
117
+ results['h'] = None
118
+ return results
119
+
120
+
121
+ def send_to_txt2img(image):
122
+
123
+ result = {tabs: gr.update(selected="t2i")}
124
+
125
+ try:
126
+ text = image.info['parameters']
127
+ data = get_data(text)
128
+ result[prompt] = gr.update(value=data['prompt'])
129
+ result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
130
+ result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
131
+ result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
132
+ result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
133
+ result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
134
+ result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
135
+ result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
136
+ if model in model_names:
137
+ result[model] = gr.update(value=model_names[model])
138
+ else:
139
+ result[model] = gr.update()
140
+ return result
141
+
142
+ except Exception as e:
143
+ print(e)
144
+
145
+ return result
146
+
147
+
148
+ prodia_client = Prodia(api_key="7b736a45-069e-483c-8e7f-098067fb32b2")
149
+ model_list = prodia_client.list_models()
150
+ model_names = {}
151
+
152
+ for model_name in model_list:
153
+ name_without_ext = remove_id_and_ext(model_name)
154
+ model_names[name_without_ext] = model_name
155
+
156
+
157
+ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
158
+ result = prodia_client.generate({
159
+ "prompt": prompt,
160
+ "negative_prompt": negative_prompt,
161
+ "model": model,
162
+ "steps": steps,
163
+ "sampler": sampler,
164
+ "cfg_scale": cfg_scale,
165
+ "width": width,
166
+ "height": height,
167
+ "seed": seed
168
+ })
169
+
170
+ job = prodia_client.wait(result)
171
+
172
+ return job["imageUrl"]
173
+
174
+
175
+ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
176
+ result = prodia_client.transform({
177
+ "imageData": image_to_base64(input_image),
178
+ "denoising_strength": denoising,
179
+ "prompt": prompt,
180
+ "negative_prompt": negative_prompt,
181
+ "model": model,
182
+ "steps": steps,
183
+ "sampler": sampler,
184
+ "cfg_scale": cfg_scale,
185
+ "width": width,
186
+ "height": height,
187
+ "seed": seed
188
+ })
189
+
190
+ job = prodia_client.wait(result)
191
+
192
+ return job["imageUrl"]
193
+
194
+
195
+ css = """
196
+ #generate {
197
+ height: 100%;
198
+ }
199
+ """
200
+
201
+ with gr.Blocks(css=css) as demo:
202
+ with gr.Row():
203
+ with gr.Column(scale=6):
204
+ model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
205
+
206
+ with gr.Column(scale=1):
207
+ gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Arifzyn.](https://api.arifzyn.biz.id).")
208
+
209
+ with gr.Tabs() as tabs:
210
+ with gr.Tab("txt2img", id='t2i'):
211
+ with gr.Row():
212
+ with gr.Column(scale=6, min_width=600):
213
+ prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
214
+ negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
215
+ with gr.Column():
216
+ text_button = gr.Button("Generate", variant='primary', elem_id="generate")
217
+
218
+ with gr.Row():
219
+ with gr.Column(scale=3):
220
+ with gr.Tab("Generation"):
221
+ with gr.Row():
222
+ with gr.Column(scale=1):
223
+ sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
224
+
225
+ with gr.Column(scale=1):
226
+ steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
227
+
228
+ with gr.Row():
229
+ with gr.Column(scale=1):
230
+ width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
231
+ height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
232
+
233
+ with gr.Column(scale=1):
234
+ batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
235
+ batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
236
+
237
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
238
+ seed = gr.Number(label="Seed", value=-1)
239
+
240
+ with gr.Column(scale=2):
241
+ image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
242
+
243
+ text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
244
+ seed], outputs=image_output, concurrency_limit=64)
245
+
246
+ with gr.Tab("img2img", id='i2i'):
247
+ with gr.Row():
248
+ with gr.Column(scale=6, min_width=600):
249
+ i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
250
+ i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
251
+ with gr.Column():
252
+ i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
253
+
254
+ with gr.Row():
255
+ with gr.Column(scale=3):
256
+ with gr.Tab("Generation"):
257
+ i2i_image_input = gr.Image(type="pil")
258
+
259
+ with gr.Row():
260
+ with gr.Column(scale=1):
261
+ i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
262
+
263
+ with gr.Column(scale=1):
264
+ i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
265
+
266
+ with gr.Row():
267
+ with gr.Column(scale=1):
268
+ i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
269
+ i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
270
+
271
+ with gr.Column(scale=1):
272
+ i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
273
+ i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
274
+
275
+ i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
276
+ i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
277
+ i2i_seed = gr.Number(label="Seed", value=-1)
278
+
279
+ with gr.Column(scale=2):
280
+ i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
281
+
282
+ i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
283
+ model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
284
+ i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
285
+
286
+ with gr.Tab("PNG Info"):
287
+ def plaintext_to_html(text, classname=None):
288
+ content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
289
+
290
+ return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
291
+
292
+
293
+ def get_exif_data(image):
294
+ items = image.info
295
+
296
+ info = ''
297
+ for key, text in items.items():
298
+ info += f"""
299
+ <div>
300
+ <p><b>{plaintext_to_html(str(key))}</b></p>
301
+ <p>{plaintext_to_html(str(text))}</p>
302
+ </div>
303
+ """.strip()+"\n"
304
+
305
+ if len(info) == 0:
306
+ message = "Nothing found in the image."
307
+ info = f"<div><p>{message}<p></div>"
308
+
309
+ return info
310
+
311
+ with gr.Row():
312
+ with gr.Column():
313
+ image_input = gr.Image(type="pil")
314
+
315
+ with gr.Column():
316
+ exif_output = gr.HTML(label="EXIF Data")
317
+ send_to_txt2img_btn = gr.Button("Send to txt2img")
318
+
319
+ image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
320
+ send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
321
+ steps, seed, model, sampler,
322
+ width, height, cfg_scale],
323
+ concurrency_limit=64)
324
+
325
+ demo.queue(max_size=80, api_open=False).launch(show_error=True)
326
+