Spaces:
Runtime error
Runtime error
import os | |
from typing import Iterator | |
import gradio as gr | |
from text_generation import Client # Assuming you have a text_generation module | |
from transformers import AutoModel | |
# Set Hugging Face API token from environment variable | |
HF_TOKEN = os.environ.get('chatbot', False) | |
if not HF_TOKEN: | |
raise ValueError("Hugging Face API token is not set. Set the HF_READ_TOKEN environment variable.") | |
EOS_STRING = '</s>' | |
EOT_STRING = '<EOT>' | |
# Load the private model with access token | |
access_token = os.environ.get('chatbot', False) | |
if not access_token: | |
raise ValueError("Hugging Face model access token is not set. Set the HF_MODEL_ACCESS_TOKEN environment variable.") | |
# Set protected namespaces to resolve the warning | |
model_config = AutoModel.config | |
model_config['protected_namespaces'] = () | |
model = AutoModel.from_pretrained("private/model", token=access_token) | |
def get_prompt(message, chat_history, system_prompt): | |
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n'] | |
do_strip = False | |
for user_input, response in chat_history: | |
user_input = user_input.strip() if do_strip else user_input | |
do_strip = True | |
texts.append(f"{user_input} [/INST\ {response.strip()} </s><s>[INST] ") | |
message = message.strip() if do_strip else message | |
texts.append(f"{message} [/INST]") | |
return ''.join(texts) | |
def run(model_id, message, chat_history, system_prompt, max_new_tokens=1024, temperature=0.3, top_p=0.9, top_k=50): | |
API_URL = "https://api-inference.huggingface.co/models/" + model_id | |
client = Client(API_URL, headers={'Authorization': f"Bearer {HF_TOKEN}"}) | |
prompt = get_prompt(message, chat_history, system_prompt) | |
generate_kwargs = dict( | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature | |
) | |
stream = client.generate_stream(prompt, **generate_kwargs) | |
output = '' | |
for response in stream: | |
if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]): | |
return output | |
else: | |
output += response.token.text | |
yield output | |
return output | |
DEFAULT_SYSTEM_PROMPT = """ | |
You are Jarvis. You are an AI assistant, you are moderately-polite and give only true information. | |
You carefully provide accurate, factual, thoughtful, nuanced answers, and are brilliant at reasoning. | |
If you think there might not be a correct answer, you say so. Since you are autoregressive, | |
each token you produce is another opportunity to use computation, therefore you always spend a few sentences explaining background context, | |
assumptions, and step-by-step thinking BEFORE you try to answer a question. | |
""" | |
MAX_MAX_NEW_TOKENS = 10240 | |
DEFAULT_MAX_NEW_TOKENS = 4096 | |
MAX_INPUT_TOKEN_LENGTH = 4000 | |
DESCRIPTION = "# <h1>He's just Jarvis. ;)</h1>" | |
def clear_and_save_textbox(message): return '', message | |
def display_input(message, history=[]): | |
history.append((message, '')) | |
return history | |
def delete_prev_fn(history=[]): | |
try: | |
message, _ = history.pop() | |
except IndexError: | |
message = '' | |
return history, message or '' | |
def generate(model_id, message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k): | |
if max_new_tokens > MAX_MAX_NEW_TOKENS: | |
raise ValueError | |
history = history_with_input[:-1] | |
generator = run(model_id, message, history, system_prompt, max_new_tokens, temperature, top_p, top_k) | |
try: | |
first_response = next(generator) | |
yield history + [(message, first_response)] | |
except StopIteration: | |
yield history + [(message, '')] | |
for response in generator: | |
yield history + [(message, response)] | |
def process_example(model_id, message): | |
generator = generate(model_id, message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50) | |
for x in generator: | |
pass | |
return '', x | |
def check_input_token_length(message, chat_history, system_prompt): | |
input_token_length = len(message) + len(chat_history) | |
if input_token_length > MAX_INPUT_TOKEN_LENGTH: | |
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Client your chat history and try again.") | |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Group(): | |
chatbot = gr.Chatbot(label='Jarvis') | |
with gr.Row(): | |
textbox = gr.Textbox(container=False, show_label=False, placeholder='Hey, Jarvis', scale=7) | |
model_id = gr.Dropdown(label='LLM', | |
choices=[ | |
'mistralai/Mistral-7B-Instruct-v0.1', | |
'HuggingFaceH4/zephyr-7b-beta', | |
'meta-llama/Llama-2-7b-chat-hf' | |
], | |
value='mistralai/Mistral-7B-Instruct-v0.1', scale=3) | |
submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) | |
with gr.Row(): | |
retry_button = gr.Button('Retry', variant='secondary') | |
undo_button = gr.Button('Undo', variant='secondary') | |
clear_button = gr.Button('Clear', variant='secondary') | |
saved_input = gr.State() | |
with gr.Accordion(label='Advanced Options', open=False): | |
system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False) | |
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label='Temperatur', minimum=0.1, maximum=4.0, step=0.1, value=0.1) | |
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10) | |
textbox.submit( | |
fn=clear_and_save_textbox, | |
inputs=textbox, | |
outputs=[textbox, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).then( | |
fn=check_input_token_length, | |
inputs=[saved_input, chatbot, system_prompt], | |
api_name=False, | |
queue=False, | |
).success( | |
fn=generate, | |
inputs=[ | |
model_id, | |
saved_input, | |
chatbot, | |
system_prompt, | |
max_new_tokens, | |
temperature, | |
top_p, | |
top_k, | |
], | |
outputs=chatbot, | |
api_name=False, | |
) | |
button_event_preprocess = submit_button.click( | |
fn=clear_and_save_textbox, | |
inputs=textbox, | |
outputs=[textbox, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).then( | |
fn=check_input_token_length, | |
inputs=[saved_input, chatbot, system_prompt], | |
api_name=False, | |
queue=False, | |
).success( | |
fn=generate, | |
inputs=[ | |
model_id, | |
saved_input, | |
chatbot, | |
system_prompt, | |
max_new_tokens, | |
temperature, | |
top_p, | |
top_k, | |
], | |
outputs=chatbot, | |
api_name=False, | |
) | |
retry_button.click( | |
fn=delete_prev_fn, | |
inputs=chatbot, | |
outputs=[chatbot, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=display_input, | |
inputs=[saved_input, chatbot], | |
outputs=chatbot, | |
api_name=False, | |
queue=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
model_id, | |
saved_input, | |
chatbot, | |
system_prompt, | |
max_new_tokens, | |
temperature, | |
top_p, | |
top_k, | |
], | |
outputs=chatbot, | |
api_name=False, | |
) | |
undo_button.click( | |
fn=delete_prev_fn, | |
inputs=chatbot, | |
outputs=[chatbot, saved_input], | |
api_name=False, | |
queue=False, | |
).then( | |
fn=lambda x: x, | |
inputs=[saved_input], | |
outputs=textbox, | |
api_name=False, | |
queue=False, | |
) | |
clear_button.click( | |
fn=lambda: ([], ''), | |
outputs=[chatbot, saved_input], | |
queue=False, | |
api_name=False, | |
) | |
demo.queue(max_size=32).launch(show_api=False) |