Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,62 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import cv2
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
| 6 |
|
| 7 |
-
# Load
|
| 8 |
-
model_name = "
|
| 9 |
model = VideoMAEForVideoClassification.from_pretrained(model_name)
|
| 10 |
processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
def
|
| 14 |
cap = cv2.VideoCapture(video_path)
|
| 15 |
frames = []
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
while cap.isOpened():
|
| 18 |
ret, frame = cap.read()
|
| 19 |
if not ret:
|
| 20 |
break
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
if len(frames) == 0:
|
| 27 |
-
return "No frames detected
|
| 28 |
|
| 29 |
-
# Convert frames to tensor
|
| 30 |
inputs = processor(images=frames, return_tensors="pt")
|
| 31 |
-
|
| 32 |
with torch.no_grad():
|
| 33 |
outputs = model(**inputs)
|
| 34 |
|
| 35 |
logits = outputs.logits
|
| 36 |
predicted_class_idx = logits.argmax(-1).item()
|
| 37 |
-
predicted_label = model.config.id2label[predicted_class_idx] # Convert index to label
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
# Gradio UI
|
| 42 |
iface = gr.Interface(
|
| 43 |
fn=predict,
|
| 44 |
inputs=gr.Video(),
|
| 45 |
-
outputs=gr.Textbox(label="
|
| 46 |
-
title="Sign Language
|
| 47 |
-
description="Upload a video of a hand gesture
|
| 48 |
)
|
| 49 |
|
| 50 |
if __name__ == "__main__":
|
| 51 |
-
iface.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import cv2
|
| 4 |
+
import os
|
| 5 |
import numpy as np
|
| 6 |
from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
| 7 |
|
| 8 |
+
# Load a lighter pretrained model
|
| 9 |
+
model_name = "facebook/videomae-base"
|
| 10 |
model = VideoMAEForVideoClassification.from_pretrained(model_name)
|
| 11 |
processor = VideoMAEImageProcessor.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
# Reduce frames for faster processing
|
| 14 |
+
def preprocess_video(video_path):
|
| 15 |
cap = cv2.VideoCapture(video_path)
|
| 16 |
frames = []
|
| 17 |
+
frame_skip = 5 # Skip every 5 frames to speed up processing
|
| 18 |
+
|
| 19 |
+
count = 0
|
| 20 |
while cap.isOpened():
|
| 21 |
ret, frame = cap.read()
|
| 22 |
if not ret:
|
| 23 |
break
|
| 24 |
+
if count % frame_skip == 0:
|
| 25 |
+
frame = cv2.resize(frame, (224, 224)) # Resize to match model input
|
| 26 |
+
frames.append(frame)
|
| 27 |
+
count += 1
|
| 28 |
|
| 29 |
cap.release()
|
| 30 |
+
return frames
|
| 31 |
+
|
| 32 |
+
# Function to predict sign language words
|
| 33 |
+
def predict(video_path):
|
| 34 |
+
frames = preprocess_video(video_path)
|
| 35 |
|
| 36 |
if len(frames) == 0:
|
| 37 |
+
return "No frames detected, try a different video."
|
| 38 |
|
|
|
|
| 39 |
inputs = processor(images=frames, return_tensors="pt")
|
| 40 |
+
|
| 41 |
with torch.no_grad():
|
| 42 |
outputs = model(**inputs)
|
| 43 |
|
| 44 |
logits = outputs.logits
|
| 45 |
predicted_class_idx = logits.argmax(-1).item()
|
|
|
|
| 46 |
|
| 47 |
+
# Mapping to common words (example, update with real labels)
|
| 48 |
+
labels = ["Hello", "Thanks", "Yes", "No", "Goodbye", "Please", "Sorry"]
|
| 49 |
+
predicted_label = labels[predicted_class_idx % len(labels)] # Placeholder mapping
|
| 50 |
+
|
| 51 |
+
return predicted_label
|
| 52 |
|
|
|
|
| 53 |
iface = gr.Interface(
|
| 54 |
fn=predict,
|
| 55 |
inputs=gr.Video(),
|
| 56 |
+
outputs=gr.Textbox(label="Predicted Sign"),
|
| 57 |
+
title="Sign Language to Text Converter",
|
| 58 |
+
description="Upload a video of a hand gesture and get the predicted word."
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == "__main__":
|
| 62 |
+
iface.launch()
|