Spaces:
Runtime error
Runtime error
Upload setup_qdrant.ipynb
Browse files- setup_qdrant.ipynb +211 -0
setup_qdrant.ipynb
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"data": {
|
| 10 |
+
"text/plain": [
|
| 11 |
+
"'/Users/arda/Desktop/A.I./Projects/FinanceChatbot'"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
"execution_count": 1,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"output_type": "execute_result"
|
| 17 |
+
}
|
| 18 |
+
],
|
| 19 |
+
"source": [
|
| 20 |
+
"%pwd"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 2,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"# Import libraries\n",
|
| 30 |
+
"import os\n",
|
| 31 |
+
"import warnings\n",
|
| 32 |
+
"from dotenv import load_dotenv\n",
|
| 33 |
+
"from langchain.document_loaders import PyPDFLoader, DirectoryLoader\n",
|
| 34 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
| 35 |
+
"from langchain_qdrant import QdrantVectorStore\n",
|
| 36 |
+
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"# Ignore all warnings\n",
|
| 39 |
+
"warnings.filterwarnings(\"ignore\")"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": 3,
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [
|
| 47 |
+
{
|
| 48 |
+
"name": "stdout",
|
| 49 |
+
"output_type": "stream",
|
| 50 |
+
"text": [
|
| 51 |
+
"Environment variables loaded successfully.\n"
|
| 52 |
+
]
|
| 53 |
+
}
|
| 54 |
+
],
|
| 55 |
+
"source": [
|
| 56 |
+
"# Load environment variables from .env file\n",
|
| 57 |
+
"load_dotenv()\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"# Check if .env file exists and API keys are loaded\n",
|
| 60 |
+
"if not os.path.exists('.env'):\n",
|
| 61 |
+
" print(\"Warning: .env file not found!\")\n",
|
| 62 |
+
"elif not os.getenv(\"QDRANT_API_KEY\") or not os.getenv(\"QDRANT_URL\"):\n",
|
| 63 |
+
" print(\"Warning: QDRANT_API_KEY or QDRANT_URL not found in .env file!\")\n",
|
| 64 |
+
"else:\n",
|
| 65 |
+
" print(\"Environment variables loaded successfully.\")\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"# Settings\n",
|
| 68 |
+
"QDRANT_API_KEY = os.getenv(\"QDRANT_API_KEY\")\n",
|
| 69 |
+
"QDRANT_URL = os.getenv(\"QDRANT_URL\")\n",
|
| 70 |
+
"COLLECTION_NAME = \"finance-chatbot\"\n",
|
| 71 |
+
"DATA_DIR = \"Data\""
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": 4,
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [
|
| 79 |
+
{
|
| 80 |
+
"name": "stdout",
|
| 81 |
+
"output_type": "stream",
|
| 82 |
+
"text": [
|
| 83 |
+
"Number of unique PDF files loaded: 3\n",
|
| 84 |
+
"Loaded files:\n",
|
| 85 |
+
"File 1: Data/Basics.pdf\n",
|
| 86 |
+
"File 2: Data/Financialterms.pdf\n",
|
| 87 |
+
"File 3: Data/Statementanalysis.pdf\n",
|
| 88 |
+
"Success: All 3 PDFs (Basics.pdf, Statementanalysis.pdf, Financialterms.pdf) have been loaded.\n",
|
| 89 |
+
"Total number of pages loaded: 547\n"
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"source": [
|
| 94 |
+
"# Load and extract data from PDFs\n",
|
| 95 |
+
"def load_pdf_file(data_dir):\n",
|
| 96 |
+
" loader = DirectoryLoader(\n",
|
| 97 |
+
" data_dir,\n",
|
| 98 |
+
" glob=\"*.pdf\",\n",
|
| 99 |
+
" loader_cls=PyPDFLoader\n",
|
| 100 |
+
" )\n",
|
| 101 |
+
" documents = loader.load()\n",
|
| 102 |
+
" return documents\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"extracted_data = load_pdf_file(DATA_DIR)\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"# Verify the number of loaded PDFs by checking unique file sources\n",
|
| 107 |
+
"unique_files = set(doc.metadata.get('source', 'Unknown') for doc in extracted_data)\n",
|
| 108 |
+
"print(f\"Number of unique PDF files loaded: {len(unique_files)}\")\n",
|
| 109 |
+
"print(\"Loaded files:\")\n",
|
| 110 |
+
"for i, file in enumerate(unique_files, 1):\n",
|
| 111 |
+
" print(f\"File {i}: {file}\")\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"# Check if the expected number of PDFs (3) were loaded\n",
|
| 114 |
+
"if len(unique_files) == 3:\n",
|
| 115 |
+
" print(\"Success: All 3 PDFs (Basics.pdf, Statementanalysis.pdf, Financialterms.pdf) have been loaded.\")\n",
|
| 116 |
+
"else:\n",
|
| 117 |
+
" print(f\"Warning: Expected 3 PDFs, but {len(unique_files)} unique files were loaded. Check the Data directory.\")\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"# Additional info: Total number of pages (documents)\n",
|
| 120 |
+
"print(f\"Total number of pages loaded: {len(extracted_data)}\")"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": 5,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [
|
| 128 |
+
{
|
| 129 |
+
"name": "stdout",
|
| 130 |
+
"output_type": "stream",
|
| 131 |
+
"text": [
|
| 132 |
+
"Length of Text Chunks: 2756\n"
|
| 133 |
+
]
|
| 134 |
+
}
|
| 135 |
+
],
|
| 136 |
+
"source": [
|
| 137 |
+
"# Split the data into text chunks\n",
|
| 138 |
+
"def text_split(extracted_data):\n",
|
| 139 |
+
" text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)\n",
|
| 140 |
+
" text_chunks = text_splitter.split_documents(extracted_data)\n",
|
| 141 |
+
" return text_chunks\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"text_chunks = text_split(extracted_data)\n",
|
| 144 |
+
"print(\"Length of Text Chunks:\", len(text_chunks))"
|
| 145 |
+
]
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"cell_type": "code",
|
| 149 |
+
"execution_count": 6,
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [
|
| 152 |
+
{
|
| 153 |
+
"name": "stdout",
|
| 154 |
+
"output_type": "stream",
|
| 155 |
+
"text": [
|
| 156 |
+
"Embedding Dimension: 384\n"
|
| 157 |
+
]
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"source": [
|
| 161 |
+
"# Download embeddings from Hugging Face\n",
|
| 162 |
+
"embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"# Verify embedding dimension\n",
|
| 165 |
+
"query_result = embeddings.embed_query(\"Hello world\")\n",
|
| 166 |
+
"print(\"Embedding Dimension:\", len(query_result))"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"# Initialize Qdrant client and create/upload to collection\n",
|
| 176 |
+
"try:\n",
|
| 177 |
+
" qdrant = QdrantVectorStore.from_documents(\n",
|
| 178 |
+
" documents=text_chunks,\n",
|
| 179 |
+
" embedding=embeddings,\n",
|
| 180 |
+
" url=QDRANT_URL,\n",
|
| 181 |
+
" api_key=QDRANT_API_KEY,\n",
|
| 182 |
+
" collection_name=COLLECTION_NAME\n",
|
| 183 |
+
" )\n",
|
| 184 |
+
" print(\"Qdrant collection created and populated successfully.\")\n",
|
| 185 |
+
"except Exception as e:\n",
|
| 186 |
+
" print(f\"Error creating Qdrant collection: {e}\")"
|
| 187 |
+
]
|
| 188 |
+
}
|
| 189 |
+
],
|
| 190 |
+
"metadata": {
|
| 191 |
+
"kernelspec": {
|
| 192 |
+
"display_name": "finance_chatbot",
|
| 193 |
+
"language": "python",
|
| 194 |
+
"name": "python3"
|
| 195 |
+
},
|
| 196 |
+
"language_info": {
|
| 197 |
+
"codemirror_mode": {
|
| 198 |
+
"name": "ipython",
|
| 199 |
+
"version": 3
|
| 200 |
+
},
|
| 201 |
+
"file_extension": ".py",
|
| 202 |
+
"mimetype": "text/x-python",
|
| 203 |
+
"name": "python",
|
| 204 |
+
"nbconvert_exporter": "python",
|
| 205 |
+
"pygments_lexer": "ipython3",
|
| 206 |
+
"version": "3.10.16"
|
| 207 |
+
}
|
| 208 |
+
},
|
| 209 |
+
"nbformat": 4,
|
| 210 |
+
"nbformat_minor": 2
|
| 211 |
+
}
|