fire / app.py
ArchiMathur's picture
Update app.py
8551175 verified
# import streamlit as st
# from ultralytics import YOLO
# import cv2
# import numpy as np
# from PIL import Image
# model = YOLO("best.pt")
# model.predict(source=0,imgsize=640,conf=0.6,show=True)
# # Load the YOLO model (replace with your model path)
# model = YOLO("best.pt") # Use your YOLO model file here
# st.title("Fire Detection in Forest")
# # Sidebar for input options
# input_option = st.sidebar.selectbox("Select Input Method", ["Upload Image", "Use Webcam", "Upload Video"])
# if input_option == "Upload Image":
# # Upload Image
# uploaded_file = st.file_uploader("Choose an Image", type=["jpg", "jpeg", "png"])
# if uploaded_file is not None:
# img = Image.open(uploaded_file)
# st.image(img, caption='User Image')
# st.write("Classifying...")
# # Convert image to numpy array
# img_np = np.array(img)
# # Make predictions
# results = model.predict(source=img_np, conf=0.5)
# # Variable to check if fire is detected
# fire_detected = False
# # Draw bounding boxes on the image
# for result in results:
# boxes = result.boxes.xyxy
# for box in boxes:
# x1, y1, x2, y2 = box[:4].astype(int)
# img_np = cv2.rectangle(img_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
# # Check if the detected class is "fire" (adjust based on your model's class mapping)
# class_id = int(box[5]) # Assuming class ID is at the 6th position
# if class_id == 0: # Replace 0 with the actual class ID for fire if different
# fire_detected = True
# # Show the resulting image
# st.image(img_np, caption='Detected Fire', use_column_width=True)
# # Display message based on fire detection
# if fire_detected:
# st.success("πŸ”₯ Fire Detected!")
# else:
# st.warning("No Fire Detected.")
# elif input_option == "Use Webcam":
# st.write("Starting webcam for live detection...")
# # Start video capture
# camera = cv2.VideoCapture(0) # 0 is the default camera
# # Create a placeholder for the video feed
# video_placeholder = st.empty()
# # Main loop for live detection
# while True:
# ret, frame = camera.read()
# if not ret:
# st.write("Failed to capture image")
# break
# # Make predictions
# results = model.predict(source=frame, conf=0.5)
# # Draw bounding boxes on the frame
# for result in results:
# boxes = result.boxes.xyxy
# for box in boxes:
# x1, y1, x2, y2 = box[:4].astype(int)
# frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# # Convert frame to RGB
# rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# # Display the frame in the Streamlit app
# video_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
# # Break loop on user command
# if st.button("Stop Detection"):
# break
# # Release the camera
# camera.release()
# elif input_option == "Upload Video":
# uploaded_video = st.file_uploader("Choose a video", type=["mp4", "avi", "mov", "mkv"])
# if uploaded_video is not None:
# # Save the uploaded video temporarily
# temp_video_path = "temp_video.mp4"
# with open(temp_video_path, "wb") as f:
# f.write(uploaded_video.read())
# # Display the uploaded video
# st.video(temp_video_path)
# # Open the video file
# video_capture = cv2.VideoCapture(temp_video_path)
# # Create a placeholder for video frame processing
# video_frame_placeholder = st.empty()
# fire_detected = False
# # Loop through video frames
# while video_capture.isOpened():
# ret, frame = video_capture.read()
# if not ret:
# break
# # Make predictions using your fire detection model
# results = model.predict(source=frame, conf=0.5)
# # Draw bounding boxes on the frame if fire is detected
# for result in results:
# boxes = result.boxes.xyxy
# for box in boxes:
# x1, y1, x2, y2 = box[:4].astype(int)
# frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# fire_detected = True # Set fire_detected flag if a bounding box is found
# # Convert the frame to RGB format
# rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# # Display the processed frame
# video_frame_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
# # Display detection result
# if fire_detected:
# st.write("Fire detected in the video.")
# else:
# st.write("No fire detected in the video.")
# # Release the video capture
# video_capture.release()
import streamlit as st
from ultralytics import YOLO
import numpy as np
from PIL import Image
# Load the YOLO model (use the path to your 'best.pt' file)
model = YOLO("best.pt")
st.title("Fire Detection in Forest")
# Upload Image
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Open the uploaded image
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded Image", use_column_width=True)
# Convert image to a numpy array
img_np = np.array(img)
# Make predictions
results = model.predict(source=img_np, imgsz=640, conf=0.5)
# Check if fire is detected
fire_detected = any("fire" in results.names[int(cls)] for cls in results[0].boxes.cls)
# Display results
if fire_detected:
st.success("πŸ”₯ Fire Detected!")
else:
st.warning("No Fire Detected.")