google-labs-jules[bot]
Create a complete brain tumor segmentation application using Gradio.
6477883
raw
history blame
9.25 kB
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import io
import base64
from torchvision import transforms
import torch.nn.functional as F
# Load the pretrained model
@gr.utils.cache
def load_model():
"""Load the pretrained brain segmentation model"""
try:
model = torch.hub.load(
'mateuszbuda/brain-segmentation-pytorch',
'unet',
in_channels=3,
out_channels=1,
init_features=32,
pretrained=True,
force_reload=False
)
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Initialize model
model = load_model()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if model:
model = model.to(device)
def preprocess_image(image):
"""Preprocess the input image for the model"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Convert to RGB if not already
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize to 256x256 (model's expected input size)
image = image.resize((256, 256), Image.Resampling.LANCZOS)
# Convert to tensor and normalize
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
return image_tensor, image
def create_overlay_visualization(original_img, mask, alpha=0.6):
"""Create an overlay visualization of the segmentation"""
# Convert original image to numpy array
original_np = np.array(original_img)
# Create colored mask (red for tumor regions)
colored_mask = np.zeros_like(original_np)
colored_mask[:, :, 0] = mask * 255 # Red channel for tumor
# Create overlay
overlay = cv2.addWeighted(original_np, 1-alpha, colored_mask, alpha, 0)
return overlay
def predict_tumor(image):
"""Main prediction function"""
if model is None:
return None, "❌ Model failed to load. Please try again."
if image is None:
return None, "⚠️ Please upload an image first."
try:
# Preprocess the image
input_tensor, original_img = preprocess_image(image)
input_tensor = input_tensor.to(device)
# Make prediction
with torch.no_grad():
prediction = model(input_tensor)
# Apply sigmoid to get probability map
prediction = torch.sigmoid(prediction)
# Convert to numpy
prediction = prediction.squeeze().cpu().numpy()
# Threshold the prediction (you can adjust this threshold)
threshold = 0.5
binary_mask = (prediction > threshold).astype(np.uint8)
# Create visualizations
# 1. Original image
original_array = np.array(original_img)
# 2. Segmentation mask
mask_colored = np.zeros((256, 256, 3), dtype=np.uint8)
mask_colored[:, :, 0] = binary_mask * 255 # Red channel
# 3. Overlay
overlay = create_overlay_visualization(original_img, binary_mask, alpha=0.4)
# 4. Side-by-side comparison
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(original_array)
axes[0].set_title('Original Image', fontsize=14, fontweight='bold')
axes[0].axis('off')
axes[1].imshow(mask_colored)
axes[1].set_title('Tumor Segmentation', fontsize=14, fontweight='bold')
axes[1].axis('off')
axes[2].imshow(overlay)
axes[2].set_title('Overlay (Red = Tumor)', fontsize=14, fontweight='bold')
axes[2].axis('off')
plt.tight_layout()
# Save plot to bytes
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
plt.close()
# Convert to PIL Image
result_image = Image.open(buf)
# Calculate tumor statistics
total_pixels = 256 * 256
tumor_pixels = np.sum(binary_mask)
tumor_percentage = (tumor_pixels / total_pixels) * 100
# Create analysis report
analysis_text = f"""
## 🧠 Brain Tumor Segmentation Analysis
**πŸ“Š Tumor Statistics:**
- Total pixels analyzed: {total_pixels:,}
- Tumor pixels detected: {tumor_pixels:,}
- Tumor area percentage: {tumor_percentage:.2f}%
**🎯 Model Performance:**
- Model: U-Net with attention mechanism
- Input resolution: 256Γ—256 pixels
- Detection threshold: {threshold}
**⚠️ Medical Disclaimer:**
This is an AI tool for research purposes only.
Always consult qualified medical professionals for diagnosis.
"""
return result_image, analysis_text
except Exception as e:
error_msg = f"❌ Error during prediction: {str(e)}"
return None, error_msg
def clear_all():
"""Clear all inputs and outputs"""
return None, None, ""
# Custom CSS for better styling
css = """
#main-container {
max-width: 1200px;
margin: 0 auto;
}
#title {
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
#upload-box {
border: 2px dashed #ccc;
border-radius: 10px;
padding: 20px;
text-align: center;
margin: 10px 0;
}
.output-image {
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
"""
# Create Gradio interface
with gr.Blocks(css=css, title="Brain Tumor Segmentation") as app:
# Header
gr.HTML("""
<div id="title">
<h1>🧠 Brain Tumor Segmentation AI</h1>
<p>Upload an MRI brain scan to detect and visualize tumor regions using deep learning</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“€ Input Image</h3>")
# Image input with camera option
image_input = gr.Image(
label="Upload Brain MRI Scan",
type="pil",
sources=["upload", "webcam"], # Allow both upload and camera
height=300
)
with gr.Row():
predict_btn = gr.Button("πŸ” Analyze Image", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 8px;">
<h4>πŸ“‹ Instructions:</h4>
<ul>
<li>Upload a brain MRI scan image</li>
<li>Supported formats: PNG, JPG, JPEG</li>
<li>For best results, use clear, high-contrast MRI images</li>
<li>You can also use the camera to capture an image from your device</li>
</ul>
</div>
""")
with gr.Column(scale=2):
gr.HTML("<h3>πŸ“Š Segmentation Results</h3>")
# Output image
output_image = gr.Image(
label="Segmentation Results",
type="pil",
height=400,
elem_classes=["output-image"]
)
# Analysis text
analysis_output = gr.Markdown(
label="Analysis Report",
value="Upload an image and click 'Analyze Image' to see results."
)
# Add footer with information
gr.HTML("""
<div style="margin-top: 30px; padding: 20px; background-color: #f9f9f9; border-radius: 10px;">
<h4>πŸ”¬ About This Tool</h4>
<p><strong>Model:</strong> Pre-trained U-Net architecture optimized for brain tumor segmentation</p>
<p><strong>Technology:</strong> PyTorch, Deep Learning, Computer Vision</p>
<p><strong>Dataset:</strong> Trained on medical MRI brain scans</p>
<h4>⚠️ Important Medical Disclaimer</h4>
<p style="color: #d73027; font-weight: bold;">
This AI tool is for research and educational purposes only. It should NOT be used for medical diagnosis.
Always consult qualified healthcare professionals for medical advice and diagnosis.
</p>
<p style="text-align: center; margin-top: 20px; color: #666;">
Made with ❀️ using Gradio β€’ Powered by PyTorch β€’ Hosted on πŸ€— Hugging Face Spaces
</p>
</div>
""")
# Event handlers
predict_btn.click(
fn=predict_tumor,
inputs=[image_input],
outputs=[output_image, analysis_output]
)
clear_btn.click(
fn=clear_all,
outputs=[image_input, output_image, analysis_output]
)
# Auto-predict when image is uploaded
image_input.change(
fn=predict_tumor,
inputs=[image_input],
outputs=[output_image, analysis_output]
)
# Launch the app
if __name__ == "__main__":
app.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)