Commit
Β·
d67c1ff
1
Parent(s):
a84cb50
final working space
Browse files- README.md +169 -0
- app.py +114 -175
- models/{resnet_50.pth β model_14.pth} +0 -0
- classes.txt β src/classes.txt +0 -0
- {models β src}/model_10.pth +0 -0
README.md
CHANGED
@@ -10,3 +10,172 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
|
15 |
+
# ResNet50 Image Classifier
|
16 |
+
|
17 |
+
This is a Gradio web application that uses a trained ResNet50 model to classify images. The application provides real-time predictions with top-3 confidence scores for uploaded images.
|
18 |
+
|
19 |
+
## Live Demo
|
20 |
+
|
21 |
+
Visit the application at [Hugging Face Spaces URL]
|
22 |
+
|
23 |
+
## Features
|
24 |
+
|
25 |
+
- Real-time image classification
|
26 |
+
- Top-3 predictions with confidence scores
|
27 |
+
- Support for various image formats
|
28 |
+
- User-friendly interface
|
29 |
+
- Detailed prediction logging
|
30 |
+
- Example images for testing
|
31 |
+
|
32 |
+
## Using the Application
|
33 |
+
|
34 |
+
### Quick Start
|
35 |
+
1. Visit the Hugging Face Space
|
36 |
+
2. Upload an image using one of these methods:
|
37 |
+
- Click the "Upload Image" button
|
38 |
+
- Drag and drop an image into the input area
|
39 |
+
- Use the provided example images
|
40 |
+
|
41 |
+
### Input Requirements
|
42 |
+
- Supported formats: JPG, PNG, BMP
|
43 |
+
- Both color and grayscale images accepted
|
44 |
+
- Images are automatically:
|
45 |
+
- Resized to 256 pixels
|
46 |
+
- Center cropped to 224x224
|
47 |
+
- Normalized using ImageNet statistics
|
48 |
+
|
49 |
+
### Output Format
|
50 |
+
The model returns:
|
51 |
+
1. **Predicted Class**: The most likely class
|
52 |
+
2. **Top 3 Predictions**: Three most likely classes with confidence scores
|
53 |
+
|
54 |
+
Example output:
|
55 |
+
```
|
56 |
+
Predicted Class: dog
|
57 |
+
Top 3 Predictions:
|
58 |
+
dog: 95.32%
|
59 |
+
cat: 3.45%
|
60 |
+
fox: 1.23%
|
61 |
+
```
|
62 |
+
|
63 |
+
## Technical Details
|
64 |
+
|
65 |
+
### Model Architecture
|
66 |
+
- Base model: ResNet50
|
67 |
+
- Input size: 224x224 pixels
|
68 |
+
- Output: Class probabilities through softmax
|
69 |
+
- Model format: PyTorch (.pth)
|
70 |
+
|
71 |
+
### Image Processing Pipeline
|
72 |
+
```python
|
73 |
+
transform = transforms.Compose([
|
74 |
+
transforms.Resize(256),
|
75 |
+
transforms.CenterCrop(224),
|
76 |
+
transforms.ToTensor(),
|
77 |
+
transforms.Normalize(
|
78 |
+
mean=[0.485, 0.456, 0.406],
|
79 |
+
std=[0.229, 0.224, 0.225]
|
80 |
+
)
|
81 |
+
])
|
82 |
+
```
|
83 |
+
|
84 |
+
### File Structure
|
85 |
+
```
|
86 |
+
.
|
87 |
+
βββ app.py # Main application file
|
88 |
+
βββ requirements.txt # Dependencies
|
89 |
+
βββ README.md # Documentation
|
90 |
+
βββ src/
|
91 |
+
β βββ model_10.pth # Trained model weights
|
92 |
+
β βββ classes.txt # Class labels
|
93 |
+
βββ models/
|
94 |
+
β βββ model_n.pth # other models
|
95 |
+
βββ examples/ # Example images
|
96 |
+
βββ example1.jpg
|
97 |
+
βββ example2.jpg
|
98 |
+
```
|
99 |
+
|
100 |
+
## Deployment Guide
|
101 |
+
|
102 |
+
### Prerequisites
|
103 |
+
1. Hugging Face account
|
104 |
+
2. Trained ResNet50 model (.pth format)
|
105 |
+
3. Class labels file (classes.txt)
|
106 |
+
4. Example images (optional)
|
107 |
+
|
108 |
+
### Deployment Steps
|
109 |
+
1. Create a new Space:
|
110 |
+
- Go to huggingface.co/spaces
|
111 |
+
- Click "Create new Space"
|
112 |
+
- Select "Gradio" as the SDK
|
113 |
+
- Use the provided space configuration from this README
|
114 |
+
|
115 |
+
2. Upload required files:
|
116 |
+
- All files from the File Structure section
|
117 |
+
- Ensure correct file paths in app.py
|
118 |
+
|
119 |
+
3. The Space will automatically build and deploy
|
120 |
+
|
121 |
+
|
122 |
+
### Space Configuration
|
123 |
+
```yaml
|
124 |
+
title: ResNetonImageNet - ResNet50 Image Classifier
|
125 |
+
emoji: π
|
126 |
+
colorFrom: blue
|
127 |
+
colorTo: red
|
128 |
+
sdk: gradio
|
129 |
+
sdk_version: 5.9.1
|
130 |
+
app_file: app.py
|
131 |
+
pinned: false
|
132 |
+
```
|
133 |
+
|
134 |
+
## Troubleshooting
|
135 |
+
|
136 |
+
### Common Issues
|
137 |
+
1. **Model Loading Errors**
|
138 |
+
- Verify model path in app.py
|
139 |
+
- Check model format and class count
|
140 |
+
|
141 |
+
2. **Image Upload Issues**
|
142 |
+
- Verify supported formats
|
143 |
+
- Check image file size
|
144 |
+
|
145 |
+
3. **Prediction Errors**
|
146 |
+
- First prediction may be slower (model loading)
|
147 |
+
- Check input image quality
|
148 |
+
|
149 |
+
### Performance Notes
|
150 |
+
- CPU inference by default
|
151 |
+
- GPU supported if available
|
152 |
+
- Batch processing not supported
|
153 |
+
- Real-time predictions
|
154 |
+
|
155 |
+
## Development
|
156 |
+
|
157 |
+
### Requirements
|
158 |
+
```
|
159 |
+
torch>=2.0.0
|
160 |
+
torchvision>=0.15.0
|
161 |
+
gradio>=4.19.2
|
162 |
+
Pillow>=9.0.0
|
163 |
+
numpy>=1.21.0
|
164 |
+
```
|
165 |
+
|
166 |
+
### Local Development
|
167 |
+
1. Clone the repository
|
168 |
+
2. Install dependencies:
|
169 |
+
```bash
|
170 |
+
pip install -r requirements.txt
|
171 |
+
```
|
172 |
+
3. Run locally:
|
173 |
+
```bash
|
174 |
+
python app.py
|
175 |
+
```
|
176 |
+
|
177 |
+
## Support
|
178 |
+
|
179 |
+
- GitHub Issues: [Repository URL]
|
180 |
+
- Hugging Face Forum: [Forum URL]
|
181 |
+
- Documentation: [Docs URL]
|
app.py
CHANGED
@@ -3,212 +3,151 @@ import torch
|
|
3 |
import torchvision.transforms as transforms
|
4 |
from PIL import Image
|
5 |
from torchvision.models import resnet50
|
6 |
-
import os
|
7 |
-
import logging
|
8 |
-
from typing import Optional, Union
|
9 |
-
import numpy as np
|
10 |
from pathlib import Path
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
EXAMPLES_DIR = BASE_DIR / "examples"
|
20 |
-
STATIC_DIR = BASE_DIR / "static" / "uploaded"
|
21 |
-
|
22 |
-
# Ensure directories exist
|
23 |
-
STATIC_DIR.mkdir(parents=True, exist_ok=True)
|
24 |
-
|
25 |
-
# Global variables
|
26 |
-
MODEL_PATH = MODELS_DIR / "resnet_50.pth"
|
27 |
-
CLASSES_PATH = BASE_DIR / "classes.txt"
|
28 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
if CLASS_NAMES is None:
|
47 |
-
raise RuntimeError("Failed to load class labels from classes.txt")
|
48 |
-
|
49 |
-
# Cache the model to avoid reloading for each prediction
|
50 |
-
model = None
|
51 |
-
|
52 |
-
def load_model() -> Optional[torch.nn.Module]:
|
53 |
"""
|
54 |
-
Load the ResNet50 model
|
55 |
"""
|
56 |
-
global model
|
57 |
-
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
model.fc = torch.nn.Linear(model.fc.in_features, len(CLASS_NAMES))
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
76 |
model.to(DEVICE)
|
77 |
model.eval()
|
78 |
|
79 |
logger.info("Model loaded successfully")
|
80 |
return model
|
81 |
-
|
82 |
except Exception as e:
|
83 |
-
logger.error(f"Error loading model: {
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
"""
|
90 |
-
try:
|
91 |
-
if isinstance(image, np.ndarray):
|
92 |
-
image = Image.fromarray(image)
|
93 |
-
|
94 |
-
transform = transforms.Compose([
|
95 |
-
transforms.Resize((224, 224)),
|
96 |
-
transforms.ToTensor(),
|
97 |
-
transforms.Normalize(
|
98 |
-
mean=[0.485, 0.456, 0.406],
|
99 |
-
std=[0.229, 0.224, 0.225]
|
100 |
-
)
|
101 |
-
])
|
102 |
-
|
103 |
-
return transform(image).unsqueeze(0).to(DEVICE)
|
104 |
-
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(f"Error preprocessing image: {str(e)}")
|
107 |
-
return None
|
108 |
|
109 |
-
def
|
110 |
"""
|
111 |
-
|
112 |
-
Returns the predicted class and top 5 confidence scores
|
113 |
"""
|
114 |
try:
|
115 |
if image is None:
|
116 |
-
return "
|
117 |
|
118 |
-
|
119 |
-
if
|
120 |
-
|
121 |
-
|
122 |
-
# Ensure model is in eval mode
|
123 |
-
model.eval()
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
with torch.no_grad():
|
130 |
-
|
131 |
-
output = model(input_tensor)
|
132 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
133 |
-
|
134 |
-
# Get predictions and confidences
|
135 |
-
top_5_probs, top_5_indices = torch.topk(probabilities, k=5)
|
136 |
|
137 |
-
#
|
138 |
-
|
139 |
-
CLASS_NAMES[idx.item()]: "{:.2f}".format(float(prob.item() * 100))
|
140 |
-
for prob, idx in zip(top_5_probs, top_5_indices)
|
141 |
-
}
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
except Exception as e:
|
148 |
-
logger.error(f"Prediction error: {str(e)}")
|
149 |
-
return f"Error during prediction: {str(e)}", {}
|
150 |
-
|
151 |
-
def get_example_list() -> list:
|
152 |
-
"""
|
153 |
-
Get list of example images from the examples directory
|
154 |
-
"""
|
155 |
-
try:
|
156 |
-
examples = []
|
157 |
-
for ext in ['.jpg', '.jpeg', '.png']:
|
158 |
-
examples.extend(list(EXAMPLES_DIR.glob(f'*{ext}')))
|
159 |
-
return [[str(ex)] for ex in sorted(examples)]
|
160 |
-
except Exception as e:
|
161 |
-
logger.error(f"Error loading examples: {str(e)}")
|
162 |
-
return []
|
163 |
-
|
164 |
-
# Create Gradio interface with error handling
|
165 |
-
try:
|
166 |
-
with gr.Blocks(theme=gr.themes.Base()) as iface:
|
167 |
-
gr.Markdown("# Image Classification with ResNet50")
|
168 |
-
gr.Markdown("Upload an image to classify. The model will predict the class and show top 5 confidence scores.")
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
# Add examples
|
180 |
-
gr.Examples(
|
181 |
-
examples=get_example_list(),
|
182 |
-
inputs=input_image,
|
183 |
-
outputs=[output_label, confidence_label],
|
184 |
-
fn=predict,
|
185 |
-
cache_examples=True
|
186 |
-
)
|
187 |
-
|
188 |
-
# Set up prediction event
|
189 |
-
predict_btn.click(
|
190 |
-
fn=predict,
|
191 |
-
inputs=input_image,
|
192 |
-
outputs=[output_label, confidence_label]
|
193 |
-
)
|
194 |
-
input_image.change(
|
195 |
-
fn=predict,
|
196 |
-
inputs=input_image,
|
197 |
-
outputs=[output_label, confidence_label]
|
198 |
-
)
|
199 |
-
|
200 |
-
except Exception as e:
|
201 |
-
logger.error(f"Error creating Gradio interface: {str(e)}")
|
202 |
-
raise
|
203 |
-
|
204 |
-
if __name__ == "__main__":
|
205 |
-
try:
|
206 |
-
load_model() # Pre-load the model
|
207 |
-
iface.launch(
|
208 |
-
share=False,
|
209 |
-
server_name="0.0.0.0",
|
210 |
-
server_port=7860,
|
211 |
-
debug=False
|
212 |
-
)
|
213 |
except Exception as e:
|
214 |
-
logger.error(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torchvision.transforms as transforms
|
4 |
from PIL import Image
|
5 |
from torchvision.models import resnet50
|
|
|
|
|
|
|
|
|
6 |
from pathlib import Path
|
7 |
+
import logging
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
|
11 |
+
# Setup logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Path configurations
|
16 |
+
MODEL_PATH = Path('src/model_10.pth')
|
17 |
+
CLASSES_PATH = Path('models/classes.txt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
|
20 |
+
# Image preprocessing - using the same transforms as training
|
21 |
+
transform = transforms.Compose([
|
22 |
+
transforms.Resize(256),
|
23 |
+
transforms.CenterCrop(224),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize(
|
26 |
+
mean=[0.485, 0.456, 0.406],
|
27 |
+
std=[0.229, 0.224, 0.225]
|
28 |
+
)
|
29 |
+
])
|
30 |
+
|
31 |
+
def load_classes():
|
32 |
+
with open(CLASSES_PATH) as f:
|
33 |
+
return [line.strip() for line in f.readlines()]
|
34 |
+
|
35 |
+
def load_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"""
|
37 |
+
Load the trained ResNet50 model
|
38 |
"""
|
|
|
|
|
39 |
try:
|
40 |
+
# Initialize model
|
41 |
+
model = resnet50(weights=None)
|
42 |
+
num_classes = len(load_classes())
|
43 |
+
model.fc = torch.nn.Linear(model.fc.in_features, num_classes)
|
|
|
44 |
|
45 |
+
# Load checkpoint
|
46 |
+
checkpoint = torch.load(MODEL_PATH, map_location=DEVICE)
|
|
|
47 |
|
48 |
+
# Extract state dict from checkpoint
|
49 |
+
if isinstance(checkpoint, dict):
|
50 |
+
if "model" in checkpoint:
|
51 |
+
state_dict = checkpoint["model"]
|
52 |
+
elif "state_dict" in checkpoint:
|
53 |
+
state_dict = checkpoint["state_dict"]
|
54 |
+
elif "model_state_dict" in checkpoint:
|
55 |
+
state_dict = checkpoint["model_state_dict"]
|
56 |
+
else:
|
57 |
+
state_dict = checkpoint
|
58 |
+
else:
|
59 |
+
state_dict = checkpoint
|
60 |
+
|
61 |
+
# Clean state dict keys
|
62 |
+
new_state_dict = {}
|
63 |
+
for k, v in state_dict.items():
|
64 |
+
name = k.replace("module.", "")
|
65 |
+
if name.startswith("model."):
|
66 |
+
name = name[6:]
|
67 |
+
new_state_dict[name] = v
|
68 |
|
69 |
+
# Load state dict and set to eval mode
|
70 |
+
model.load_state_dict(new_state_dict, strict=False)
|
71 |
model.to(DEVICE)
|
72 |
model.eval()
|
73 |
|
74 |
logger.info("Model loaded successfully")
|
75 |
return model
|
76 |
+
|
77 |
except Exception as e:
|
78 |
+
logger.error(f"Error loading model: {e}")
|
79 |
+
raise
|
80 |
|
81 |
+
# Global variables
|
82 |
+
CLASSES = load_classes()
|
83 |
+
MODEL = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
def predict_image(image):
|
86 |
"""
|
87 |
+
Predict class for input image with top-3 accuracy
|
|
|
88 |
"""
|
89 |
try:
|
90 |
if image is None:
|
91 |
+
return "No image provided", "Please upload an image"
|
92 |
|
93 |
+
# Convert to PIL Image if needed
|
94 |
+
if not isinstance(image, Image.Image):
|
95 |
+
image = Image.fromarray(image)
|
|
|
|
|
|
|
96 |
|
97 |
+
# Preprocess image
|
98 |
+
input_tensor = transform(image).unsqueeze(0).to(DEVICE)
|
99 |
+
|
100 |
+
# Get prediction
|
101 |
with torch.no_grad():
|
102 |
+
output = MODEL(input_tensor)
|
|
|
103 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
|
|
|
|
|
|
104 |
|
105 |
+
# Get top-3 predictions
|
106 |
+
top3_prob, top3_indices = torch.topk(probabilities, k=3)
|
|
|
|
|
|
|
107 |
|
108 |
+
# Format predictions
|
109 |
+
predictions = []
|
110 |
+
for prob, idx in zip(top3_prob, top3_indices):
|
111 |
+
class_name = CLASSES[idx]
|
112 |
+
confidence = prob.item() * 100
|
113 |
+
predictions.append(f"{class_name}: {confidence:.2f}%")
|
114 |
|
115 |
+
# Join predictions with newlines
|
116 |
+
predictions_text = "\n".join(predictions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Get top prediction
|
119 |
+
predicted_class = CLASSES[top3_indices[0]]
|
120 |
+
|
121 |
+
# Log predictions
|
122 |
+
logger.info(f"Predicted class: {predicted_class}")
|
123 |
+
logger.info(f"Top 3 predictions:\n{predictions_text}")
|
124 |
+
|
125 |
+
return predicted_class, predictions_text
|
126 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except Exception as e:
|
128 |
+
logger.error(f"Prediction error: {e}")
|
129 |
+
return "Error in prediction", str(e)
|
130 |
+
|
131 |
+
# Create Gradio interface
|
132 |
+
iface = gr.Interface(
|
133 |
+
fn=predict_image,
|
134 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
135 |
+
outputs=[
|
136 |
+
gr.Textbox(label="Predicted Class"),
|
137 |
+
gr.Textbox(label="Top 3 Predictions", lines=3)
|
138 |
+
],
|
139 |
+
title="ResNet50 Image Classifier",
|
140 |
+
description=(
|
141 |
+
"Upload an image to classify.\n"
|
142 |
+
"The model will predict the class and show confidence scores for the top 3 predictions."
|
143 |
+
),
|
144 |
+
examples=[
|
145 |
+
["examples/example1.jpg"],
|
146 |
+
["examples/example2.jpg"]
|
147 |
+
] if Path("examples").exists() else None,
|
148 |
+
theme=gr.themes.Base()
|
149 |
+
)
|
150 |
+
|
151 |
+
# Launch the app
|
152 |
+
if __name__ == "__main__":
|
153 |
+
iface.launch()
|
models/{resnet_50.pth β model_14.pth}
RENAMED
File without changes
|
classes.txt β src/classes.txt
RENAMED
File without changes
|
{models β src}/model_10.pth
RENAMED
File without changes
|