Commit
·
7ae96e1
1
Parent(s):
ac1ff66
init
Browse files- app.py +194 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision.models import resnet50
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
from typing import Optional, Union
|
9 |
+
import numpy as np
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Directory Configuration
|
17 |
+
BASE_DIR = Path(__file__).resolve().parent
|
18 |
+
MODELS_DIR = BASE_DIR / "models"
|
19 |
+
EXAMPLES_DIR = BASE_DIR / "examples"
|
20 |
+
STATIC_DIR = BASE_DIR / "static" / "uploaded"
|
21 |
+
|
22 |
+
# Ensure directories exist
|
23 |
+
STATIC_DIR.mkdir(parents=True, exist_ok=True)
|
24 |
+
|
25 |
+
# Global variables
|
26 |
+
MODEL_PATH = MODELS_DIR / "resnet_50.pth"
|
27 |
+
CLASSES_PATH = MODELS_DIR / "classes.txt"
|
28 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
+
|
30 |
+
def load_class_labels() -> Optional[list]:
|
31 |
+
"""
|
32 |
+
Load class labels from the classes.txt file
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
if not CLASSES_PATH.exists():
|
36 |
+
raise FileNotFoundError(f"Classes file not found at {CLASSES_PATH}")
|
37 |
+
|
38 |
+
with open(CLASSES_PATH, 'r') as f:
|
39 |
+
return [line.strip() for line in f.readlines()]
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Error loading class labels: {str(e)}")
|
42 |
+
return None
|
43 |
+
|
44 |
+
# Load class labels
|
45 |
+
CLASS_NAMES = load_class_labels()
|
46 |
+
if CLASS_NAMES is None:
|
47 |
+
raise RuntimeError("Failed to load class labels from classes.txt")
|
48 |
+
|
49 |
+
# Cache the model to avoid reloading for each prediction
|
50 |
+
model = None
|
51 |
+
|
52 |
+
def load_model() -> Optional[torch.nn.Module]:
|
53 |
+
"""
|
54 |
+
Load the ResNet50 model with error handling
|
55 |
+
"""
|
56 |
+
global model
|
57 |
+
|
58 |
+
try:
|
59 |
+
if model is not None:
|
60 |
+
return model
|
61 |
+
|
62 |
+
if not MODEL_PATH.exists():
|
63 |
+
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
|
64 |
+
|
65 |
+
logger.info(f"Loading model on {DEVICE}")
|
66 |
+
model = resnet50(pretrained=False)
|
67 |
+
model.fc = torch.nn.Linear(model.fc.in_features, len(CLASS_NAMES))
|
68 |
+
|
69 |
+
# Load the model weights
|
70 |
+
state_dict = torch.load(MODEL_PATH, map_location=DEVICE)
|
71 |
+
|
72 |
+
if 'state_dict' in state_dict:
|
73 |
+
state_dict = state_dict['state_dict']
|
74 |
+
|
75 |
+
model.load_state_dict(state_dict)
|
76 |
+
model.to(DEVICE)
|
77 |
+
model.eval()
|
78 |
+
|
79 |
+
logger.info("Model loaded successfully")
|
80 |
+
return model
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error loading model: {str(e)}")
|
84 |
+
return None
|
85 |
+
|
86 |
+
def preprocess_image(image: Union[np.ndarray, Image.Image]) -> Optional[torch.Tensor]:
|
87 |
+
"""
|
88 |
+
Preprocess the input image with error handling
|
89 |
+
"""
|
90 |
+
try:
|
91 |
+
if isinstance(image, np.ndarray):
|
92 |
+
image = Image.fromarray(image)
|
93 |
+
|
94 |
+
transform = transforms.Compose([
|
95 |
+
transforms.Resize((224, 224)),
|
96 |
+
transforms.ToTensor(),
|
97 |
+
transforms.Normalize(
|
98 |
+
mean=[0.485, 0.456, 0.406],
|
99 |
+
std=[0.229, 0.224, 0.225]
|
100 |
+
)
|
101 |
+
])
|
102 |
+
|
103 |
+
return transform(image).unsqueeze(0).to(DEVICE)
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
logger.error(f"Error preprocessing image: {str(e)}")
|
107 |
+
return None
|
108 |
+
|
109 |
+
def predict(image: Union[np.ndarray, None]) -> tuple[str, dict]:
|
110 |
+
"""
|
111 |
+
Make predictions on the input image with comprehensive error handling
|
112 |
+
Returns the predicted class and top 5 confidence scores
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
if image is None:
|
116 |
+
return "Error: No image provided", {}
|
117 |
+
|
118 |
+
model = load_model()
|
119 |
+
if model is None:
|
120 |
+
return "Error: Failed to load model", {}
|
121 |
+
|
122 |
+
input_tensor = preprocess_image(image)
|
123 |
+
if input_tensor is None:
|
124 |
+
return "Error: Failed to preprocess image", {}
|
125 |
+
|
126 |
+
with torch.no_grad():
|
127 |
+
output = model(input_tensor)
|
128 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
129 |
+
|
130 |
+
predicted_class_idx = torch.argmax(probabilities).item()
|
131 |
+
predicted_class = CLASS_NAMES[predicted_class_idx]
|
132 |
+
|
133 |
+
# Get top 5 predictions
|
134 |
+
top_5_probs, top_5_indices = torch.topk(probabilities, k=5)
|
135 |
+
|
136 |
+
# Create confidence dictionary for top 5 classes
|
137 |
+
confidences = {
|
138 |
+
CLASS_NAMES[idx.item()]: float(prob.item())
|
139 |
+
for prob, idx in zip(top_5_probs, top_5_indices)
|
140 |
+
}
|
141 |
+
|
142 |
+
return predicted_class, confidences
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Prediction error: {str(e)}")
|
146 |
+
return f"Error during prediction: {str(e)}", {}
|
147 |
+
|
148 |
+
def get_example_list() -> list:
|
149 |
+
"""
|
150 |
+
Get list of example images from the examples directory
|
151 |
+
"""
|
152 |
+
try:
|
153 |
+
examples = []
|
154 |
+
for ext in ['.jpg', '.jpeg', '.png']:
|
155 |
+
examples.extend(list(EXAMPLES_DIR.glob(f'*{ext}')))
|
156 |
+
return [[str(ex)] for ex in sorted(examples)]
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Error loading examples: {str(e)}")
|
159 |
+
return []
|
160 |
+
|
161 |
+
# Create Gradio interface with error handling
|
162 |
+
try:
|
163 |
+
iface = gr.Interface(
|
164 |
+
fn=predict,
|
165 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
166 |
+
outputs=[
|
167 |
+
gr.Label(label="Predicted Class", num_top_classes=1),
|
168 |
+
gr.Label(label="Top 5 Predictions", num_top_classes=5)
|
169 |
+
],
|
170 |
+
title="Image Classification with ResNet50",
|
171 |
+
description=(
|
172 |
+
"Upload an image to classify:\n"
|
173 |
+
"The model will predict the class and show top 5 confidence scores."
|
174 |
+
),
|
175 |
+
examples=get_example_list(),
|
176 |
+
cache_examples=True,
|
177 |
+
theme=gr.themes.Base()
|
178 |
+
)
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Error creating Gradio interface: {str(e)}")
|
182 |
+
raise
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
try:
|
186 |
+
load_model() # Pre-load the model
|
187 |
+
iface.launch(
|
188 |
+
share=False,
|
189 |
+
server_name="0.0.0.0",
|
190 |
+
server_port=7860,
|
191 |
+
debug=False
|
192 |
+
)
|
193 |
+
except Exception as e:
|
194 |
+
logger.error(f"Error launching application: {str(e)}")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
torchvision>=0.15.0
|
3 |
+
gradio>=3.50.2
|
4 |
+
Pillow>=9.0.0
|
5 |
+
numpy>=1.21.0
|
6 |
+
typing-extensions>=4.0.0
|