Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
import pandas as pd | |
import numpy as np | |
import joblib | |
# Load your trained model and encoders | |
xgb_model = joblib.load("xgb_model.joblib") | |
encoders = joblib.load("encoders.joblib") | |
# Function to handle unseen labels during encoding | |
def safe_transform(encoder, column): | |
classes = encoder.classes_ | |
return [encoder.transform([x])[0] if x in classes else -1 for x in column] | |
# Define FastAPI app | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Endpoint for making predictions | |
def predict(customer_name: str, | |
customer_address: str, | |
customer_phone: str, | |
customer_email: str, | |
cod:str, | |
weight: str, | |
pickup_address: str, | |
origin_city_name: str, | |
destination_city_name: str, | |
origin_country: str): | |
# Convert input data to DataFrame | |
input_data = { | |
'customer_name': customer_name, | |
'customer_address': customer_address, | |
'customer_phone': customer_phone, | |
'customer_email': customer_email, | |
'cod': float(cod), | |
'weight': float(weight), | |
'pickup_address':pickup_address, | |
'origin_city.name':origin_city_name, | |
'destination_city.name':destination_city_name | |
} | |
input_df = pd.DataFrame([input_data]) | |
# Encode categorical variables using the same encoders used during training | |
for col in input_df.columns: | |
if col in encoders: | |
input_df[col] = safe_transform(encoders[col], input_df[col]) | |
# Predict and obtain probabilities | |
pred = xgb_model.predict(input_df) | |
pred_proba = xgb_model.predict_proba(input_df) | |
# Output | |
predicted_status = "Unknown" if pred[0] == -1 else encoders['status.name'].inverse_transform([pred])[0] | |
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown" | |
if predicted_status == "RETURN TO CLIENT": | |
probability = 100 - probability | |
return {"Probability": round(probability,2)} | |