|
import cv2
|
|
import numpy as np
|
|
from tensorflow.keras.models import load_model
|
|
import os
|
|
from FeatureExtraction import FeatureExtractor
|
|
|
|
model = load_model('orignal_model_b32.h5')
|
|
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
|
|
|
|
|
feature_extractor = FeatureExtractor(img_shape=(224, 224), channels=3)
|
|
|
|
def predict_fight(frames_buffer):
|
|
|
|
features_sequence = feature_extractor.extract_feature(frames_buffer)
|
|
|
|
|
|
features_sequence = np.transpose(features_sequence, (1, 0))
|
|
features_sequence = np.expand_dims(features_sequence, axis=0)
|
|
|
|
|
|
prediction = model.predict(features_sequence)
|
|
return prediction > 0.8
|
|
|