Aqdas's picture
Update app.py
2543dfa verified
import streamlit as st
from lida import Manager, TextGenerationConfig, llm
from lida.datamodel import Goal
import os
import pandas as pd
# make data dir if it doesn't exist
os.makedirs("data", exist_ok=True)
st.set_page_config(
page_title="LLM Visualization on tabular data",
page_icon="📊",
)
st.sidebar.write("## Setup")
# Step 1 - Get OpenAI API key
openai_key = os.getenv("OPENAI_API_KEY")
if not openai_key:
openai_key = st.sidebar.text_input("Enter OpenAI API key:")
if openai_key:
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
st.sidebar.write(f"Current key: {display_key}")
else:
st.sidebar.write("Please enter OpenAI API key.")
else:
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}")
# Step 2 - Select a dataset and summarization method
if openai_key:
# Initialize selected_dataset to None
selected_dataset = None
# select model from gpt-4 , gpt-3.5-turbo, gpt-3.5-turbo-16k
st.sidebar.write("## Text Generation Model")
models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
selected_model = st.sidebar.selectbox(
'Choose a model',
options=models,
index=0
)
# select temperature on a scale of 0.0 to 1.0
# st.sidebar.write("## Text Generation Temperature")
temperature = st.sidebar.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0)
# set use_cache in sidebar
use_cache = st.sidebar.checkbox("Use cache", value=True)
# Handle dataset selection and upload
st.sidebar.write("## Data Summarization")
st.sidebar.write("### Choose a dataset")
datasets = [
{"label": "Select a dataset", "url": None},
{"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"},
{"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"},
]
selected_dataset_label = st.sidebar.selectbox(
'Choose a dataset',
options=[dataset["label"] for dataset in datasets],
index=0
)
upload_own_data = st.sidebar.checkbox("Upload your own data")
if upload_own_data:
uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"])
if uploaded_file is not None:
# Get the original file name and extension
file_name, file_extension = os.path.splitext(uploaded_file.name)
# Load the data depending on the file type
if file_extension.lower() == ".csv":
data = pd.read_csv(uploaded_file)
elif file_extension.lower() == ".json":
data = pd.read_json(uploaded_file)
# Save the data using the original file name in the data dir
uploaded_file_path = os.path.join("data", uploaded_file.name)
data.to_csv(uploaded_file_path, index=False)
selected_dataset = uploaded_file_path
datasets.append({"label": file_name, "url": uploaded_file_path})
# st.sidebar.write("Uploaded file path: ", uploaded_file_path)
else:
selected_dataset = datasets[[dataset["label"]
for dataset in datasets].index(selected_dataset_label)]["url"]
if not selected_dataset:
st.info("To continue, select a dataset from the sidebar on the left or upload your own.")
st.sidebar.write("### Choose a summarization method")
# summarization_methods = ["default", "llm", "columns"]
summarization_methods = [
{"label": "llm",
"description":
"Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"},
{"label": "default",
"description": "Uses dataset column statistics and column names as the summary"},
{"label": "columns", "description": "Uses the dataset column names as the summary"}]
# selected_method = st.sidebar.selectbox("Choose a method", options=summarization_methods)
selected_method_label = st.sidebar.selectbox(
'Choose a method',
options=[method["label"] for method in summarization_methods],
index=0
)
selected_method = summarization_methods[[
method["label"] for method in summarization_methods].index(selected_method_label)]["label"]
# add description of selected method in very small font to sidebar
selected_summary_method_description = summarization_methods[[
method["label"] for method in summarization_methods].index(selected_method_label)]["description"]
if selected_method:
st.sidebar.markdown(
f"<span> {selected_summary_method_description} </span>",
unsafe_allow_html=True)
# Step 3 - Generate data summary
if openai_key and selected_dataset and selected_method:
lida = Manager(text_gen=llm("openai", api_key=openai_key))
textgen_config = TextGenerationConfig(
n=1,
temperature=temperature,
model=selected_model,
use_cache=use_cache)
st.write("## Summary")
# **** lida.summarize *****
summary = lida.summarize(
selected_dataset,
summary_method=selected_method,
textgen_config=textgen_config)
if "dataset_description" in summary:
st.write(summary["dataset_description"])
if "fields" in summary:
fields = summary["fields"]
nfields = []
for field in fields:
flatted_fields = {}
flatted_fields["column"] = field["column"]
# flatted_fields["dtype"] = field["dtype"]
for row in field["properties"].keys():
if row != "samples":
flatted_fields[row] = field["properties"][row]
else:
flatted_fields[row] = str(field["properties"][row])
# flatted_fields = {**flatted_fields, **field["properties"]}
nfields.append(flatted_fields)
nfields_df = pd.DataFrame(nfields)
st.write(nfields_df)
else:
st.write(str(summary))
# Step 4 - Generate goals
if summary:
st.sidebar.write("### Goal Selection")
num_goals = st.sidebar.slider(
"Number of goals to generate",
min_value=1,
max_value=10,
value=4)
own_goal = st.sidebar.checkbox("Add Your Own Goal")
# **** lida.goals *****
goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config)
st.write(f"## Goals ({len(goals)})")
default_goal = goals[0].question
goal_questions = [goal.question for goal in goals]
if own_goal:
user_goal = st.sidebar.text_input("Describe Your Goal")
if user_goal:
new_goal = Goal(question=user_goal, visualization=user_goal, rationale="")
goals.append(new_goal)
goal_questions.append(new_goal.question)
selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0)
# st.markdown("### Selected Goal")
selected_goal_index = goal_questions.index(selected_goal)
st.write(goals[selected_goal_index])
selected_goal_object = goals[selected_goal_index]
# Step 5 - Generate visualizations
if selected_goal_object:
st.sidebar.write("## Visualization Library")
visualization_libraries = ["seaborn", "matplotlib", "plotly"]
selected_library = st.sidebar.selectbox(
'Choose a visualization library',
options=visualization_libraries,
index=0
)
# Update the visualization generation call to use the selected library.
st.write("## Visualizations")
# slider for number of visualizations
num_visualizations = st.sidebar.slider(
"Number of visualizations to generate",
min_value=1,
max_value=10,
value=2)
textgen_config = TextGenerationConfig(
n=num_visualizations, temperature=temperature,
model=selected_model,
use_cache=use_cache)
# **** lida.visualize *****
visualizations = lida.visualize(
summary=summary,
goal=selected_goal_object,
textgen_config=textgen_config,
library=selected_library)
viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))]
selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0)
selected_viz = visualizations[viz_titles.index(selected_viz_title)]
if selected_viz.raster:
from PIL import Image
import io
import base64
imgdata = base64.b64decode(selected_viz.raster)
img = Image.open(io.BytesIO(imgdata))
st.image(img, caption=selected_viz_title, use_column_width=True)
st.write("### Visualization Code")
st.code(selected_viz.code)