|
import ast |
|
import copy |
|
import html |
|
import pprint |
|
import random |
|
import re |
|
import time |
|
import traceback |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
from transformers import LogitsProcessorList, is_torch_xpu_available |
|
|
|
import modules.shared as shared |
|
from modules.cache_utils import process_llamacpp_cache |
|
from modules.callbacks import ( |
|
Iteratorize, |
|
Stream, |
|
_StopEverythingStoppingCriteria |
|
) |
|
from modules.extensions import apply_extensions |
|
from modules.grammar.grammar_utils import initialize_grammar |
|
from modules.grammar.logits_process import GrammarConstrainedLogitsProcessor |
|
from modules.html_generator import generate_4chan_html, generate_basic_html |
|
from modules.logging_colors import logger |
|
from modules.models import clear_torch_cache, local_rank |
|
|
|
|
|
def generate_reply(*args, **kwargs): |
|
shared.generation_lock.acquire() |
|
try: |
|
for result in _generate_reply(*args, **kwargs): |
|
yield result |
|
finally: |
|
shared.generation_lock.release() |
|
|
|
|
|
def _generate_reply(question, state, stopping_strings=None, is_chat=False, escape_html=False, for_ui=False): |
|
|
|
|
|
generate_func = apply_extensions('custom_generate_reply') |
|
if generate_func is None: |
|
if shared.model_name == 'None' or shared.model is None: |
|
logger.error("No model is loaded! Select one in the Model tab.") |
|
yield '' |
|
return |
|
|
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel']: |
|
generate_func = generate_reply_custom |
|
else: |
|
generate_func = generate_reply_HF |
|
|
|
if generate_func != generate_reply_HF and shared.args.verbose: |
|
logger.info("PROMPT=") |
|
print(question) |
|
print() |
|
|
|
|
|
original_question = question |
|
if not is_chat: |
|
state = apply_extensions('state', state) |
|
question = apply_extensions('input', question, state) |
|
|
|
|
|
all_stop_strings = [] |
|
for st in (stopping_strings, state['custom_stopping_strings']): |
|
if type(st) is str: |
|
st = ast.literal_eval(f"[{st}]") |
|
|
|
if type(st) is list and len(st) > 0: |
|
all_stop_strings += st |
|
|
|
shared.stop_everything = False |
|
clear_torch_cache() |
|
seed = set_manual_seed(state['seed']) |
|
last_update = -1 |
|
reply = '' |
|
is_stream = state['stream'] |
|
if len(all_stop_strings) > 0 and not state['stream']: |
|
state = copy.deepcopy(state) |
|
state['stream'] = True |
|
|
|
min_update_interval = 0 |
|
if state.get('max_updates_second', 0) > 0: |
|
min_update_interval = 1 / state['max_updates_second'] |
|
|
|
|
|
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat): |
|
reply, stop_found = apply_stopping_strings(reply, all_stop_strings) |
|
if escape_html: |
|
reply = html.escape(reply) |
|
if is_stream: |
|
cur_time = time.time() |
|
|
|
|
|
if state['max_tokens_second'] > 0: |
|
diff = 1 / state['max_tokens_second'] - (cur_time - last_update) |
|
if diff > 0: |
|
time.sleep(diff) |
|
|
|
last_update = time.time() |
|
yield reply |
|
|
|
|
|
|
|
else: |
|
if cur_time - last_update > min_update_interval: |
|
last_update = cur_time |
|
yield reply |
|
|
|
if stop_found or (state['max_tokens_second'] > 0 and shared.stop_everything): |
|
break |
|
|
|
if not is_chat: |
|
reply = apply_extensions('output', reply, state) |
|
|
|
yield reply |
|
|
|
|
|
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): |
|
if shared.tokenizer is None: |
|
raise ValueError('No tokenizer is loaded') |
|
|
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'CtransformersModel', 'Exllamav2Model']: |
|
input_ids = shared.tokenizer.encode(str(prompt)) |
|
if shared.model.__class__.__name__ not in ['Exllamav2Model']: |
|
input_ids = np.array(input_ids).reshape(1, len(input_ids)) |
|
else: |
|
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) |
|
if not add_bos_token: |
|
while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id: |
|
input_ids = input_ids[:, 1:] |
|
|
|
|
|
if truncation_length is not None: |
|
input_ids = input_ids[:, -truncation_length:] |
|
|
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu: |
|
return input_ids |
|
elif shared.args.deepspeed: |
|
return input_ids.to(device=local_rank) |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
return input_ids.to(device) |
|
elif is_torch_xpu_available(): |
|
return input_ids.to("xpu:0") |
|
else: |
|
return input_ids.cuda() |
|
|
|
|
|
def decode(output_ids, skip_special_tokens=True): |
|
if shared.tokenizer is None: |
|
raise ValueError('No tokenizer is loaded') |
|
|
|
return shared.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens) |
|
|
|
|
|
def get_encoded_length(prompt): |
|
length_after_extensions = apply_extensions('tokenized_length', prompt) |
|
if length_after_extensions is not None: |
|
return length_after_extensions |
|
|
|
return len(encode(prompt)[0]) |
|
|
|
|
|
def get_token_ids(prompt): |
|
tokens = encode(prompt)[0] |
|
decoded_tokens = [shared.tokenizer.decode([i]) for i in tokens] |
|
|
|
output = '' |
|
for row in list(zip(tokens, decoded_tokens)): |
|
output += f"{str(int(row[0])).ljust(5)} - {repr(row[1])}\n" |
|
|
|
return output |
|
|
|
|
|
def get_max_prompt_length(state): |
|
return state['truncation_length'] - state['max_new_tokens'] |
|
|
|
|
|
def generate_reply_wrapper(question, state, stopping_strings=None): |
|
""" |
|
Returns formatted outputs for the UI |
|
""" |
|
reply = question if not shared.is_seq2seq else '' |
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
for reply in generate_reply(question, state, stopping_strings, is_chat=False, escape_html=True, for_ui=True): |
|
if not shared.is_seq2seq: |
|
reply = question + reply |
|
|
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
|
|
def formatted_outputs(reply, model_name): |
|
if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']): |
|
reply = fix_gpt4chan(reply) |
|
return html.unescape(reply), generate_4chan_html(reply) |
|
else: |
|
return html.unescape(reply), generate_basic_html(reply) |
|
|
|
|
|
def fix_gpt4chan(s): |
|
""" |
|
Removes empty replies from gpt4chan outputs |
|
""" |
|
for i in range(10): |
|
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n *\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n\n\n---", "---", s) |
|
|
|
return s |
|
|
|
|
|
def fix_galactica(s): |
|
""" |
|
Fix the LaTeX equations in GALACTICA |
|
""" |
|
s = s.replace(r'\[', r'$') |
|
s = s.replace(r'\]', r'$') |
|
s = s.replace(r'\(', r'$') |
|
s = s.replace(r'\)', r'$') |
|
s = s.replace(r'$$', r'$') |
|
s = re.sub(r'\n', r'\n\n', s) |
|
s = re.sub(r"\n{3,}", "\n\n", s) |
|
return s |
|
|
|
|
|
def set_manual_seed(seed): |
|
seed = int(seed) |
|
if seed == -1: |
|
seed = random.randint(1, 2**31) |
|
|
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(seed) |
|
elif is_torch_xpu_available(): |
|
torch.xpu.manual_seed_all(seed) |
|
|
|
return seed |
|
|
|
|
|
def stop_everything_event(): |
|
shared.stop_everything = True |
|
|
|
|
|
def apply_stopping_strings(reply, all_stop_strings): |
|
stop_found = False |
|
for string in all_stop_strings: |
|
idx = reply.find(string) |
|
if idx != -1: |
|
reply = reply[:idx] |
|
stop_found = True |
|
break |
|
|
|
if not stop_found: |
|
|
|
|
|
for string in all_stop_strings: |
|
for j in range(len(string) - 1, 0, -1): |
|
if reply[-j:] == string[:j]: |
|
reply = reply[:-j] |
|
break |
|
else: |
|
continue |
|
|
|
break |
|
|
|
return reply, stop_found |
|
|
|
|
|
def get_reply_from_output_ids(output_ids, state=None, starting_from=0): |
|
reply = decode(output_ids[starting_from:], state['skip_special_tokens'] if state else True) |
|
|
|
|
|
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from) and not reply.startswith(' '): |
|
first_token = shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from])) |
|
if isinstance(first_token, (bytes,)): |
|
first_token = first_token.decode('utf8') |
|
|
|
if first_token.startswith('▁'): |
|
reply = ' ' + reply |
|
|
|
return reply |
|
|
|
|
|
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): |
|
generate_params = {} |
|
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'smoothing_curve', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']: |
|
if k in state: |
|
generate_params[k] = state[k] |
|
|
|
if isinstance(state['sampler_priority'], list) and len(state['sampler_priority']) > 0: |
|
generate_params['sampler_priority'] = state['sampler_priority'] |
|
elif isinstance(state['sampler_priority'], str) and state['sampler_priority'].strip() != '': |
|
generate_params['sampler_priority'] = [x.strip() for x in state['sampler_priority'].replace('\n', ',').split(',') if x.strip()] |
|
|
|
if state['negative_prompt'] != '': |
|
generate_params['negative_prompt_ids'] = encode(state['negative_prompt']) |
|
|
|
if state['prompt_lookup_num_tokens'] > 0: |
|
generate_params['prompt_lookup_num_tokens'] = state['prompt_lookup_num_tokens'] |
|
|
|
for k in ['epsilon_cutoff', 'eta_cutoff']: |
|
if state[k] > 0: |
|
generate_params[k] = state[k] * 1e-4 |
|
|
|
if state['ban_eos_token']: |
|
generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id] |
|
|
|
if state['custom_token_bans']: |
|
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] |
|
if len(to_ban) > 0: |
|
if generate_params.get('suppress_tokens', None): |
|
generate_params['suppress_tokens'] += to_ban |
|
else: |
|
generate_params['suppress_tokens'] = to_ban |
|
|
|
generate_params.update({'use_cache': not shared.args.no_cache}) |
|
if shared.args.deepspeed: |
|
generate_params.update({'synced_gpus': True}) |
|
|
|
|
|
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) |
|
output = input_ids[0] |
|
cuda = not any((shared.args.cpu, shared.args.deepspeed)) |
|
if state['auto_max_new_tokens']: |
|
generate_params['max_new_tokens'] = state['truncation_length'] - input_ids.shape[-1] |
|
|
|
|
|
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) |
|
original_input_ids = input_ids |
|
generate_params.update({'inputs': input_ids}) |
|
if inputs_embeds is not None: |
|
generate_params.update({'inputs_embeds': inputs_embeds}) |
|
|
|
|
|
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] |
|
generate_params['eos_token_id'] = eos_token_ids |
|
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList() |
|
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria()) |
|
|
|
|
|
processor = state.get('logits_processor', LogitsProcessorList([])) |
|
if not isinstance(processor, LogitsProcessorList): |
|
processor = LogitsProcessorList([processor]) |
|
|
|
|
|
if state['grammar_string'].strip() != '': |
|
grammar = initialize_grammar(state['grammar_string']) |
|
grammar_processor = GrammarConstrainedLogitsProcessor(grammar) |
|
processor.append(grammar_processor) |
|
|
|
apply_extensions('logits_processor', processor, input_ids) |
|
generate_params['logits_processor'] = processor |
|
|
|
if shared.args.verbose: |
|
logger.info("GENERATE_PARAMS=") |
|
filtered_params = {key: value for key, value in generate_params.items() if not isinstance(value, torch.Tensor)} |
|
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(filtered_params) |
|
print() |
|
|
|
logger.info("PROMPT=") |
|
print(decode(input_ids[0], skip_special_tokens=False)) |
|
print() |
|
|
|
|
|
if shared.model.__class__.__name__ == 'LlamacppHF' and shared.args.streaming_llm: |
|
tmp = process_llamacpp_cache(shared.model.model, input_ids[-1].tolist(), shared.model.model._input_ids.tolist()) |
|
shared.model.past_seq = torch.tensor(tmp) |
|
shared.model.save_cache() |
|
|
|
t0 = time.time() |
|
try: |
|
if not is_chat and not shared.is_seq2seq: |
|
yield '' |
|
|
|
|
|
if not state['stream']: |
|
with torch.no_grad(): |
|
output = shared.model.generate(**generate_params)[0] |
|
if cuda: |
|
output = output.cuda() |
|
|
|
starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) |
|
yield get_reply_from_output_ids(output, state, starting_from=starting_from) |
|
|
|
|
|
|
|
else: |
|
|
|
def generate_with_callback(callback=None, *args, **kwargs): |
|
kwargs['stopping_criteria'].append(Stream(callback_func=callback)) |
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
shared.model.generate(**kwargs) |
|
|
|
def generate_with_streaming(**kwargs): |
|
return Iteratorize(generate_with_callback, [], kwargs, callback=None) |
|
|
|
with generate_with_streaming(**generate_params) as generator: |
|
cumulative_reply = '' |
|
starting_from = 0 if shared.is_seq2seq else len(input_ids[0]) |
|
for output in generator: |
|
if output[-1] in eos_token_ids: |
|
break |
|
|
|
new_content = get_reply_from_output_ids(output, state, starting_from=starting_from) |
|
|
|
if chr(0xfffd) in new_content: |
|
continue |
|
|
|
cumulative_reply += new_content |
|
starting_from = len(output) |
|
yield cumulative_reply |
|
|
|
except Exception: |
|
traceback.print_exc() |
|
finally: |
|
t1 = time.time() |
|
original_tokens = len(original_input_ids[0]) |
|
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) |
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') |
|
return |
|
|
|
|
|
def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False): |
|
""" |
|
For models that do not use the transformers library for sampling |
|
""" |
|
seed = set_manual_seed(state['seed']) |
|
|
|
t0 = time.time() |
|
reply = '' |
|
try: |
|
if not is_chat: |
|
yield '' |
|
|
|
if not state['stream']: |
|
reply = shared.model.generate(question, state) |
|
yield reply |
|
else: |
|
for reply in shared.model.generate_with_streaming(question, state): |
|
yield reply |
|
|
|
except Exception: |
|
traceback.print_exc() |
|
finally: |
|
t1 = time.time() |
|
original_tokens = len(encode(original_question)[0]) |
|
new_tokens = len(encode(original_question + reply)[0]) - original_tokens |
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') |
|
return |
|
|