|
import traceback |
|
from pathlib import Path |
|
|
|
import torch |
|
from exllamav2 import ( |
|
ExLlamaV2, |
|
ExLlamaV2Cache, |
|
ExLlamaV2Cache_8bit, |
|
ExLlamaV2Cache_Q4, |
|
ExLlamaV2Config, |
|
ExLlamaV2Tokenizer |
|
) |
|
from exllamav2.generator import ExLlamaV2Sampler, ExLlamaV2StreamingGenerator |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
from modules.text_generation import get_max_prompt_length |
|
|
|
try: |
|
import flash_attn |
|
except ModuleNotFoundError: |
|
logger.warning( |
|
'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage ' |
|
'to be a lot higher than it could be.\n' |
|
'Try installing flash-attention following the instructions here: ' |
|
'https://github.com/Dao-AILab/flash-attention#installation-and-features' |
|
) |
|
pass |
|
except Exception: |
|
logger.warning('Failed to load flash-attention due to the following error:\n') |
|
traceback.print_exc() |
|
|
|
|
|
class Exllamav2Model: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def from_pretrained(self, path_to_model): |
|
|
|
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) |
|
|
|
config = ExLlamaV2Config() |
|
config.model_dir = str(path_to_model) |
|
config.prepare() |
|
|
|
config.max_seq_len = shared.args.max_seq_len |
|
config.scale_pos_emb = shared.args.compress_pos_emb |
|
config.scale_alpha_value = shared.args.alpha_value |
|
config.no_flash_attn = shared.args.no_flash_attn |
|
config.num_experts_per_token = int(shared.args.num_experts_per_token) |
|
|
|
model = ExLlamaV2(config) |
|
|
|
if not shared.args.autosplit: |
|
split = None |
|
if shared.args.gpu_split: |
|
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] |
|
|
|
model.load(split) |
|
|
|
if shared.args.cache_8bit: |
|
cache = ExLlamaV2Cache_8bit(model, lazy=shared.args.autosplit) |
|
elif shared.args.cache_4bit: |
|
cache = ExLlamaV2Cache_Q4(model, lazy=shared.args.autosplit) |
|
else: |
|
cache = ExLlamaV2Cache(model, lazy=shared.args.autosplit) |
|
|
|
if shared.args.autosplit: |
|
model.load_autosplit(cache) |
|
|
|
tokenizer = ExLlamaV2Tokenizer(config) |
|
generator = ExLlamaV2StreamingGenerator(model, cache, tokenizer) |
|
|
|
result = self() |
|
result.model = model |
|
result.cache = cache |
|
result.tokenizer = tokenizer |
|
result.generator = generator |
|
result.loras = None |
|
return result, result |
|
|
|
def encode(self, string, **kwargs): |
|
return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True) |
|
|
|
def decode(self, ids, **kwargs): |
|
if isinstance(ids, list): |
|
ids = torch.tensor([ids]) |
|
elif isinstance(ids, torch.Tensor) and ids.numel() == 1: |
|
ids = ids.view(1, -1) |
|
|
|
return self.tokenizer.decode(ids, decode_special_tokens=True)[0] |
|
|
|
def get_logits(self, token_ids, **kwargs): |
|
self.cache.current_seq_len = 0 |
|
if token_ids.shape[-1] > 1: |
|
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras) |
|
|
|
return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, loras=self.loras, **kwargs).float().cpu() |
|
|
|
def generate_with_streaming(self, prompt, state): |
|
settings = ExLlamaV2Sampler.Settings() |
|
|
|
settings.token_repetition_penalty = state['repetition_penalty'] |
|
settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] |
|
|
|
settings.token_frequency_penalty = state['frequency_penalty'] |
|
settings.token_presence_penalty = state['presence_penalty'] |
|
|
|
settings.temperature = state['temperature'] |
|
settings.top_k = state['top_k'] |
|
settings.top_p = state['top_p'] |
|
settings.top_a = state['top_a'] |
|
settings.min_p = state['min_p'] |
|
settings.tfs = state['tfs'] |
|
settings.typical = state['typical_p'] |
|
|
|
settings.temperature_last = state['temperature_last'] |
|
|
|
settings.mirostat = state['mirostat_mode'] == 2 |
|
settings.mirostat_tau = state['mirostat_tau'] |
|
settings.mirostat_eta = state['mirostat_eta'] |
|
|
|
if state['ban_eos_token']: |
|
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id]) |
|
|
|
if state['custom_token_bans']: |
|
to_ban = [int(x) for x in state['custom_token_bans'].split(',')] |
|
if len(to_ban) > 0: |
|
settings.disallow_tokens(self.tokenizer, to_ban) |
|
|
|
ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token'], encode_special_tokens=True) |
|
ids = ids[:, -get_max_prompt_length(state):] |
|
|
|
if state['auto_max_new_tokens']: |
|
max_new_tokens = state['truncation_length'] - ids.shape[-1] |
|
else: |
|
max_new_tokens = state['max_new_tokens'] |
|
|
|
self.generator.begin_stream(ids, settings, loras=self.loras) |
|
|
|
decoded_text = '' |
|
for i in range(max_new_tokens): |
|
chunk, eos, _ = self.generator.stream() |
|
if eos or shared.stop_everything: |
|
break |
|
|
|
decoded_text += chunk |
|
yield decoded_text |
|
|
|
def generate(self, prompt, state): |
|
output = '' |
|
for output in self.generate_with_streaming(prompt, state): |
|
pass |
|
|
|
return output |
|
|