Apollo-3B / utils /mm_utils.py
orrzohar's picture
init
3359719
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
from PIL import Image
from io import BytesIO
import base64
import numpy as np
import os, math, cv2, re
import torch
from transformers import StoppingCriteria
from utils.constants import *
import tempfile
from io import BytesIO
from decord import VideoReader, cpu
from num2words import num2words
from datetime import timedelta
import datetime
def read_video_cv2(video_path, all_indices):
vidcap = cv2.VideoCapture(video_path)
frames_dict = {}
max_index = max(all_indices) # Find the maximum index to avoid unnecessary reading
count = 0
success = True
while success and count <= max_index:
success, frame = vidcap.read()
if success and count in all_indices:
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(img)
frames_dict[count] = im_pil
count += 1
# Now retrieve frames according to all_indices, allowing duplicates
images = [frames_dict[idx] for idx in all_indices if idx in frames_dict]
return np.stack([np.array(img) for img in images])
def read_video_decord(video_file, all_indices):
vr = VideoReader(video_file, num_threads=1, ctx=cpu(0))
return vr.get_batch(all_indices).asnumpy()
def read_video_decord_eval(video_file, all_indices):
vr = VideoReader(video_file)
return vr.get_batch(all_indices).asnumpy()
def load_frames_from_video(video_file, all_indices, video_decode_backend="decord", eval_=False):
video_ending = os.path.splitext(video_file)[1]
if video_ending in ['.gif', '.webm'] or video_decode_backend=="opencv":
buffer = read_video_cv2(video_file, all_indices)
else:
# Use decord for other video formats
if eval_:
buffer = read_video_decord_eval(video_file, all_indices)
else:
buffer = read_video_decord(video_file, all_indices)
return buffer # (T, H, W, C)
def pad_to_center_square(frames, mean_values):
"""
Pad the given frame or frames numpy array to square dimensions using the mean values as the padding color.
Handles both single frames (H, W, C) and batches of frames (N, H, W, C).
Args:
frames (np.array): The input frame array of shape (H, W, C) or (N, H, W, C).
mean_values (tuple): Mean values for each channel, typically derived from dataset normalization parameters.
Returns:
np.array: The padded frame array with square dimensions.
"""
if frames.ndim == 3: # Single frame
frames = frames[np.newaxis, :] # Add a batch dimension
elif frames.ndim != 4:
raise ValueError("Input array must be either of shape (H, W, C) or (N, H, W, C)")
N, height, width, channels = frames.shape
size = max(width, height)
background_color = np.array(mean_values, dtype=frames.dtype)
# Create a background array with the size and fill it with the mean values
padded_frames = np.full((N, size, size, channels), background_color, dtype=frames.dtype)
# Calculate padding offsets
top, left = (size - height) // 2, (size - width) // 2
# Place the original frames in the center of the square canvas
padded_frames[:, top:top + height, left:left + width, :] = frames
return padded_frames
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
# result.paste(pil_img, (0, 0))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
# result.paste(pil_img, (0, 0))
return result
def calculate_sample_indices(clip_duration, frames_per_clip, total_frames, original_fps, video_duration, clip_sampling_ratio=1):
sample_video_fps = frames_per_clip / clip_duration
num_clips = math.ceil((video_duration / clip_duration) * clip_sampling_ratio)
frame_step = original_fps / sample_video_fps
partition_len = total_frames // num_clips
all_indices, clip_indices, timestamps = [], [], []
if frame_step > 0.5:
frame_step = max(1, int(original_fps / sample_video_fps)) #was int/floor
clip_len = int(frames_per_clip * frame_step) #was int/floor
sample_len = min(clip_len, total_frames)
clip_step = (total_frames - clip_len) // max(1, (num_clips - 1)) if total_frames > clip_len else 0
for i in range(num_clips):
if partition_len > clip_len:
start_idx = (partition_len - clip_len) // 2
end_idx = start_idx + clip_len
indices = np.arange(start_idx, end_idx, frame_step)
indices = np.clip(indices, 0, partition_len-1).astype(np.int64)
indices = indices+ i * partition_len
else:
indices = np.arange(0, sample_len, frame_step)
if len(indices) < frames_per_clip:
padding = np.full(frames_per_clip - len(indices), sample_len)
indices = np.concatenate((indices, padding))
indices = np.clip(indices, 0, sample_len-1).astype(np.int64)
indices = indices + i * clip_step
clip_indices.append(indices)
all_indices.extend(list(indices))
# Calculate timestamps
start_time = (indices[0] / original_fps)
end_time = (indices[-1] / original_fps)
timestamps.append((start_time, end_time))
else:
## original video FPS too low, we need to sample the same frame multiple times.
## Generally should not happen.
# Calculate the number of times each frame should be sampled
num_sample = int(np.ceil(1 / frame_step))
# Compute the effective clip length considering the frame step
clip_len = int(frames_per_clip * frame_step)
# Create an expanded list of indices with each frame repeated num_sample times
indices = np.repeat(np.arange(clip_len), num_sample)
# Ensure the clip length does not exceed the total number of frames
clip_len = min(clip_len, len(indices))
clip_step = (total_frames - clip_len) // max(1, (num_clips - 1)) if total_frames > clip_len else 0
sample_len = min(clip_len, total_frames)
if len(indices) < frames_per_clip:
padding = np.full(frames_per_clip - len(indices), sample_len)
indices = np.concatenate((indices, padding))
# Distribute the indices into clips
for i in range(num_clips):
current_clip_indices = np.clip(indices, 0, sample_len-1).astype(np.int64)
current_clip_indices = current_clip_indices + i * clip_step
# Append the current clip indices to the list of all clips
clip_indices.append(current_clip_indices)
all_indices.extend(current_clip_indices)
# Calculate timestamps
start_time = (current_clip_indices[0] / original_fps)
end_time = (current_clip_indices[-1] / original_fps)
timestamps.append((start_time, end_time))
return clip_indices, all_indices, timestamps
def calculate_sample_indices_uniform(frames_per_clip, total_frames, uniform_frame_count, original_fps):
# Generate indices
if total_frames >= N:
# Sample N frames uniformly without replacement
indices = np.linspace(0, total_frames - 1, N, dtype=int)
else:
# Not enough frames; repeat frames to reach N frames
repeats = math.ceil(N / total_frames)
base_indices = np.arange(total_frames)
indices = np.tile(base_indices, repeats)[:N]
# Split indices into clips
clip_indices = [
indices[i * frames_per_clip: (i + 1) * frames_per_clip]
for i in range(num_clips)
]
# Calculate timestamps for each clip
timestamps = []
for clip in clip_indices:
start_time = clip[0] / original_fps
end_time = clip[-1] / original_fps
timestamps.append((start_time, end_time))
all_indices = indices.tolist()
return clip_indices, all_indices, timestamps
def get_video_details(fname):
""" Load video content using Decord """
assert os.path.exists(fname), f'video path not found {fname}'
_fsize = os.path.getsize(fname)
assert _fsize >= 1 * 1024, f"video too short {fname}"
vr = VideoReader(fname, num_threads=-1, ctx=cpu(0))
# Get the total number of frames and the original fps of the video
total_frames = len(vr)
original_fps = vr.get_avg_fps()
video_duration = total_frames / original_fps
return total_frames, original_fps, video_duration
def get_video_details_cv2(fname):
"""
Load video content using OpenCV (cv2) and retrieve video details.
Args:
fname (str): Path to the video file.
Returns:
tuple: A tuple containing:
- total_frames (int): Total number of frames in the video.
- original_fps (float): Frames per second of the video.
- video_duration (float): Duration of the video in seconds.
Raises:
AssertionError: If the file does not exist or is too short.
ValueError: If the video cannot be opened or FPS is zero.
"""
# Check if the file exists
assert os.path.exists(fname), f'Video path not found: {fname}'
# Check if the file size is at least 1 KB
_fsize = os.path.getsize(fname)
assert _fsize >= 1 * 1024, f"Video too short: {fname}"
# Open the video file
cap = cv2.VideoCapture(fname)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {fname}")
# Retrieve the total number of frames
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Retrieve the frames per second (FPS)
original_fps = cap.get(cv2.CAP_PROP_FPS)
if original_fps == 0:
cap.release()
raise ValueError(f"Failed to get FPS for video file: {fname}")
# Calculate the video duration in seconds
video_duration = total_frames / original_fps
# Release the video capture object
cap.release()
return total_frames, original_fps, video_duration
def split_into_clips(video, frames_per_clip):
""" Split video into a list of clips """
fpc = frames_per_clip
nc = len(video) // frames_per_clip
return [video[i*fpc:(i+1)*fpc] for i in range(nc)]
def process_image(vision_processors, frames_per_clip, image):
mm_data = []
for vision_processor in vision_processors:
tmp = expand2square(image, tuple(int(x * 255) for x in vision_processor.image_mean))
tmp = np.expand_dims(np.asarray(tmp), 0)
tmp = vision_processor.preprocess(tmp, return_tensors='pt')['pixel_values'][0].unsqueeze(0)
if len(tmp.shape)==4:
## image, need B, T, C, W, H
tmp = tmp.unsqueeze(1)
tmp = tmp.repeat_interleave(frames_per_clip, dim=1)
else:
## video, need B, C, T, W, H
if tmp.shape[1]==1:
tmp = tmp.repeat_interleave(frames_per_clip, dim=1)
else:
tmp = tmp.repeat_interleave(frames_per_clip, dim=2)
mm_data.append(tmp)
return mm_data
def process_video(vision_processors, frames_per_clip, buffer):
mm_data=[]
for vision_processor in vision_processors:
centered_buffer = pad_to_center_square(buffer, tuple(int(x * 255) for x in vision_processor.image_mean))
processed_clips = []
for clip in split_into_clips(centered_buffer, frames_per_clip):
clip = vision_processor.preprocess(clip, return_tensors='pt')['pixel_values']
if type(clip) is list:
assert len(clip)==1, "LazyVideoDataset: error, vision processor returned clip that is list of len>1 ."
clip = clip[0]
processed_clips.append(clip)
mm_data.append(torch.stack(processed_clips))
return mm_data
def load_video(video_file, vision_processors, clip_duration, frames_per_clip, clip_sampling_ratio=1, video_decode_backend='decord', eval_=False):
total_frames, original_fps, video_duration = get_video_details(video_file)
_, all_indices, timestamps = calculate_sample_indices(clip_duration, frames_per_clip, total_frames, original_fps, video_duration, clip_sampling_ratio=clip_sampling_ratio)
buffer = load_frames_from_video(video_file, all_indices, video_decode_backend, eval_)
mm_data = process_video(vision_processors, frames_per_clip, buffer)
return mm_data, timestamps
class ApolloMMLoader:
def __init__(self, vision_processors, clip_duration, frames_per_clip, num_repeat_token, device, model_max_length = 32768, clip_sampling_ratio=1, video_decode_backend="decord"):
self.vision_processors=vision_processors
self.clip_duration=clip_duration
self.device=device
self.frames_per_clip=frames_per_clip
self.num_repeat_token = num_repeat_token
self.clip_sampling_ratio=clip_sampling_ratio
self.model_max_length=model_max_length
self.video_decode_backend=video_decode_backend
self.vidprompt = lambda num_clips, video_duration : f"You are provided the following series of {num2words(num_clips)}, {self.clip_duration} second clips from a {datetime.timedelta(seconds=video_duration)} [H:MM:SS] video.\n"
def load_video(self, video_file):
total_frames, original_fps, video_duration = get_video_details(video_file)
clip_sampling_ratio = min(1, (self.model_max_length * self.clip_sampling_ratio) / (video_duration * self.num_repeat_token / self.clip_duration))
_, all_indices, timestamps = calculate_sample_indices(self.clip_duration, self.frames_per_clip, total_frames, original_fps, video_duration, clip_sampling_ratio=clip_sampling_ratio)
video, timestamps = load_video(video_file, self.vision_processors, self.clip_duration, self.frames_per_clip, clip_sampling_ratio=clip_sampling_ratio, eval_=True)
num_clips = len(video[0])
num_tokens = num_clips * self.num_repeat_token
video = [v.to(device=self.device, dtype=torch.bfloat16) for v in video]
replace_string = self.vidprompt(num_clips, video_duration)
temporal_prompt = [f"{round(clip[0], 1)}-{round(clip[1], 1)} seconds: {X_TOKEN['video'] * self.num_repeat_token}" for clip in timestamps]
temporal_prompt = ',\n'.join(temporal_prompt)
replace_string = replace_string + temporal_prompt
return video, replace_string
def load_image(self, image_file):
print('implement image loading')
return None
def expand2square(pil_img, background_color):
"""
Expand the given PIL image to a square shape by adding padding.
Parameters:
- pil_img: The PIL image to be expanded.
- background_color: The color of the padding to be added.
Returns:
- The expanded PIL image.
If the image is already square, it is returned as is.
If the image is wider than it is tall, padding is added to the top and bottom.
If the image is taller than it is wide, padding is added to the left and right.
"""
width, height = pil_img.size
if pil_img.mode == 'L':
background_color = background_color[0]
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def tokenizer_mm_token(prompt, tokenizer, return_tensors=None):
tokens_regex = re.compile('|'.join(re.escape(token) for token in X_TOKEN.values()))
input_ids, last_pos, start_id = [], 0, 0
for match in tokens_regex.finditer(prompt):
if match.start() > last_pos:
input_ids.extend(tokenizer(prompt[last_pos:match.start()]).input_ids)
elif match.start() == 0:
input_ids = tokenizer('').input_ids
start_id = 1
input_ids.append(X_TOKEN_INDEX)
last_pos = match.end()
if last_pos < len(prompt):
input_ids.extend(tokenizer(prompt[last_pos:]).input_ids[start_id:])
return torch.tensor(input_ids, dtype=torch.long) if return_tensors == 'pt' else input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if (
len(cur_keyword_ids) > 1
and cur_keyword_ids[0] == tokenizer.bos_token_id
):
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
self.keyword_ids = [
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids
]
for keyword_id in self.keyword_ids:
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
return True
outputs = self.tokenizer.batch_decode(
output_ids[:, -offset:], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
return all(outputs)