Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_id = "google/flan-t5-large"
|
9 |
+
adapter_path = "./Flan-T5-Typosquat-detect" # Adjust to your saved adapter path
|
10 |
+
|
11 |
+
# Load the tokenizer and model
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
14 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
return model, tokenizer
|
18 |
+
|
19 |
+
model, tokenizer = load_model()
|
20 |
+
|
21 |
+
st.title("FLAN-T5 Typosquatting Detection")
|
22 |
+
st.write("Enter a potential typosquatted domain and a target domain to check if one is a variant of the other.")
|
23 |
+
|
24 |
+
potential_typosquat = st.text_input("Potential Typosquatted Domain", value="lonlonsoft.com")
|
25 |
+
target_domain = st.text_input("Target Domain", value="stiltsoft.net")
|
26 |
+
|
27 |
+
if st.button("Check Typosquatting"):
|
28 |
+
if potential_typosquat and target_domain:
|
29 |
+
|
30 |
+
prompt = f"Is the first domain a typosquat of the second: {potential_typosquat} {target_domain}"
|
31 |
+
|
32 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
33 |
+
outputs = model.generate(input_ids, max_new_tokens=20)
|
34 |
+
|
35 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
|
37 |
+
st.write("**Prediction:**")
|
38 |
+
st.write(prediction)
|
39 |
+
else:
|
40 |
+
st.warning("Please enter both domains to perform the check.")
|