DeepLearning / app.py
Anushkabhat9's picture
Update app.py
fe410fa verified
raw
history blame contribute delete
877 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the Whisper ASR pipeline (Whisper Small model)
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
)
# Define the transcription function for audio input
def transcribe_audio(audio):
prediction = pipe(audio, batch_size=8, return_timestamps=True)["chunks"]
transcription = "\n".join([f"[{chunk['timestamp'][0]:.2f}s - {chunk['timestamp'][1]:.2f}s] {chunk['text']}" for chunk in prediction])
return transcription
# Create a Gradio interface
interface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="Whisper Small ASR",
description="Upload or record audio for transcription using Whisper Small."
)
# Launch the Gradio app
interface.launch(share=True)