Felix Marty
commited on
Commit
·
f75daf5
1
Parent(s):
89d7a1e
add sketch
Browse files- app.py +84 -4
- onnx_export.py +132 -0
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,7 +1,87 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
from typing import Optional
|
5 |
import gradio as gr
|
6 |
|
7 |
+
from onnx_export import convert
|
8 |
+
from huggingface_hub import HfApi, Repository
|
9 |
|
10 |
+
|
11 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions"
|
12 |
+
DATA_FILENAME = "data.csv"
|
13 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
14 |
+
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
|
17 |
+
repo: Optional[Repository] = None
|
18 |
+
if HF_TOKEN:
|
19 |
+
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
|
20 |
+
|
21 |
+
|
22 |
+
def onnx_export(token: str, model_id: str, task: str) -> str:
|
23 |
+
if token == "" or model_id == "":
|
24 |
+
return """
|
25 |
+
### Invalid input 🐞
|
26 |
+
|
27 |
+
Please fill a token and model_id.
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
api = HfApi(token=token)
|
31 |
+
commit_info = convert(api=api, model_id=model_id, task=task)
|
32 |
+
print("[commit_info]", commit_info)
|
33 |
+
|
34 |
+
# save in a private dataset:
|
35 |
+
if repo is not None:
|
36 |
+
repo.git_pull(rebase=True)
|
37 |
+
with open(DATA_FILE, "a") as csvfile:
|
38 |
+
writer = csv.DictWriter(
|
39 |
+
csvfile, fieldnames=["model_id", "pr_url", "time"]
|
40 |
+
)
|
41 |
+
writer.writerow(
|
42 |
+
{
|
43 |
+
"model_id": model_id,
|
44 |
+
"pr_url": commit_info.pr_url,
|
45 |
+
"time": str(datetime.now()),
|
46 |
+
}
|
47 |
+
)
|
48 |
+
commit_url = repo.push_to_hub()
|
49 |
+
print("[dataset]", commit_url)
|
50 |
+
|
51 |
+
return f"""
|
52 |
+
### Success 🔥
|
53 |
+
Yay! This model was successfully converted and a PR was open using your token, here:
|
54 |
+
[{commit_info.pr_url}]({commit_info.pr_url})
|
55 |
+
"""
|
56 |
+
except Exception as e:
|
57 |
+
return f"""
|
58 |
+
### Error 😢😢
|
59 |
+
|
60 |
+
{e}
|
61 |
+
"""
|
62 |
+
|
63 |
+
|
64 |
+
DESCRIPTION = """
|
65 |
+
The steps are the following:
|
66 |
+
- Paste a read-access token from hf.co/settings/tokens. Read access is enough given that we will open a PR against the source repo.
|
67 |
+
- Input a model id from the Hub
|
68 |
+
- If necessary, input the task for this model.
|
69 |
+
- Click "Convert to ONNX"
|
70 |
+
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR!
|
71 |
+
"""
|
72 |
+
|
73 |
+
demo = gr.Interface(
|
74 |
+
title="Convert any model to Safetensors and open a PR",
|
75 |
+
description=DESCRIPTION,
|
76 |
+
allow_flagging="never",
|
77 |
+
article="Check out the [Optimum repo on GitHub](https://github.com/huggingface/optimum)",
|
78 |
+
inputs=[
|
79 |
+
gr.Text(max_lines=1, label="your_hf_token"),
|
80 |
+
gr.Text(max_lines=1, label="model_id"),
|
81 |
+
gr.Text(max_lines=1, label="task")
|
82 |
+
],
|
83 |
+
outputs=[gr.Markdown(label="output")],
|
84 |
+
fn=onnx_export,
|
85 |
+
)
|
86 |
+
|
87 |
+
demo.launch()
|
onnx_export.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from optimum.exporters.tasks import TasksManager
|
2 |
+
|
3 |
+
from optimum.exporters.onnx import OnnxConfigWithPast, export, validate_model_outputs
|
4 |
+
|
5 |
+
from tempfile import TemporaryDirectory
|
6 |
+
|
7 |
+
from transformers import AutoConfig, is_torch_available
|
8 |
+
|
9 |
+
from transformers import AutoConfig
|
10 |
+
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import os
|
14 |
+
import shutil
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download, get_repo_discussions
|
20 |
+
from huggingface_hub.file_download import repo_folder_name
|
21 |
+
|
22 |
+
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
|
23 |
+
try:
|
24 |
+
discussions = api.get_repo_discussions(repo_id=model_id)
|
25 |
+
except Exception:
|
26 |
+
return None
|
27 |
+
for discussion in discussions:
|
28 |
+
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
|
29 |
+
return discussion
|
30 |
+
|
31 |
+
def convert_onnx(model_id: str, task: str, folder: str):
|
32 |
+
model_class = TasksManager.get_model_class_for_task(task)
|
33 |
+
config = AutoConfig.from_pretrained(model_id)
|
34 |
+
model = model_class.from_config(config)
|
35 |
+
|
36 |
+
device = "cpu" # ?
|
37 |
+
|
38 |
+
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
|
39 |
+
# See: https://github.com/ultralytics/yolov5/pull/8378
|
40 |
+
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
|
41 |
+
return
|
42 |
+
|
43 |
+
onnx_config_class_constructor = TasksManager.get_exporter_config_constructor(model_type=config.model_type, exporter="onnx", task=task, model_name=model_id)
|
44 |
+
onnx_config = onnx_config_class_constructor(model.config)
|
45 |
+
|
46 |
+
# We need to set this to some value to be able to test the outputs values for batch size > 1.
|
47 |
+
if (
|
48 |
+
isinstance(onnx_config, OnnxConfigWithPast)
|
49 |
+
and getattr(model.config, "pad_token_id", None) is None
|
50 |
+
and task == "sequence-classification"
|
51 |
+
):
|
52 |
+
model.config.pad_token_id = 0
|
53 |
+
|
54 |
+
if is_torch_available():
|
55 |
+
from optimum.exporters.onnx.utils import TORCH_VERSION
|
56 |
+
|
57 |
+
if not onnx_config.is_torch_support_available:
|
58 |
+
print(
|
59 |
+
"Skipping due to incompatible PyTorch version. Minimum required is"
|
60 |
+
f" {onnx_config.MIN_TORCH_VERSION}, got: {TORCH_VERSION}"
|
61 |
+
)
|
62 |
+
|
63 |
+
onnx_inputs, onnx_outputs = export(
|
64 |
+
model, onnx_config, onnx_config.DEFAULT_ONNX_OPSET, Path(folder), device=device
|
65 |
+
)
|
66 |
+
atol = onnx_config.ATOL_FOR_VALIDATION
|
67 |
+
if isinstance(atol, dict):
|
68 |
+
atol = atol[task.replace("-with-past", "")]
|
69 |
+
validate_model_outputs(
|
70 |
+
onnx_config,
|
71 |
+
model,
|
72 |
+
Path(folder),
|
73 |
+
onnx_outputs,
|
74 |
+
atol,
|
75 |
+
)
|
76 |
+
|
77 |
+
# TODO: iterate in folder and add all
|
78 |
+
operations = [CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames]
|
79 |
+
|
80 |
+
return operations
|
81 |
+
|
82 |
+
|
83 |
+
def convert(api: "HfApi", model_id: str, task:str, force: bool=False) -> Optional["CommitInfo"]:
|
84 |
+
pr_title = "Adding ONNX file of this model"
|
85 |
+
info = api.model_info(model_id)
|
86 |
+
filenames = set(s.rfilename for s in info.siblings)
|
87 |
+
|
88 |
+
with TemporaryDirectory() as d:
|
89 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
90 |
+
os.makedirs(folder)
|
91 |
+
new_pr = None
|
92 |
+
try:
|
93 |
+
pr = previous_pr(api, model_id, pr_title)
|
94 |
+
if "model.onnx" in filenames and not force:
|
95 |
+
raise Exception(f"Model {model_id} is already converted, skipping..")
|
96 |
+
elif pr is not None and not force:
|
97 |
+
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
|
98 |
+
new_pr = pr
|
99 |
+
raise Exception(f"Model {model_id} already has an open PR check out {url}")
|
100 |
+
else:
|
101 |
+
convert_onnx(model_id, task, folder)
|
102 |
+
finally:
|
103 |
+
shutil.rmtree(folder)
|
104 |
+
return new_pr
|
105 |
+
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
DESCRIPTION = """
|
109 |
+
Simple utility tool to convert automatically a model on the hub to onnx format.
|
110 |
+
It is PyTorch exclusive for now.
|
111 |
+
It works by downloading the weights (PT), converting them locally, and uploading them back
|
112 |
+
as a PR on the hub.
|
113 |
+
"""
|
114 |
+
parser = argparse.ArgumentParser(description=DESCRIPTION)
|
115 |
+
parser.add_argument(
|
116 |
+
"model_id",
|
117 |
+
type=str,
|
118 |
+
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"task",
|
122 |
+
type=str,
|
123 |
+
help="The task the model is performing",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--force",
|
127 |
+
action="store_true",
|
128 |
+
help="Create the PR even if it already exists of if the model was already converted.",
|
129 |
+
)
|
130 |
+
args = parser.parse_args()
|
131 |
+
api = HfApi()
|
132 |
+
convert(api, args.model_id, task=args.task, force=args.force)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
git+https://github.com/huggingface/optimum.git#egg=optimum[onnxruntime]
|