Anupam251272
commited on
Commit
•
45a5021
1
Parent(s):
8c38885
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PyPDF2
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from deep_translator import GoogleTranslator # More stable than googletrans
|
6 |
+
import logging
|
7 |
+
from typing import Optional, Dict
|
8 |
+
import time
|
9 |
+
from pathlib import Path
|
10 |
+
import os
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Language mapping with detailed descriptions
|
21 |
+
LANGUAGE_MAPPING = {
|
22 |
+
"hi": {
|
23 |
+
"name": "Hindi - हिन्दी",
|
24 |
+
"description": "Official language of India, written in Devanagari script",
|
25 |
+
"deep_translator_code": "hi"
|
26 |
+
},
|
27 |
+
"ta": {
|
28 |
+
"name": "Tamil - தமிழ்",
|
29 |
+
"description": "Classical language of Tamil Nadu, written in Tamil script",
|
30 |
+
"deep_translator_code": "ta"
|
31 |
+
},
|
32 |
+
"te": {
|
33 |
+
"name": "Telugu - తెలుగు",
|
34 |
+
"description": "Official language of Andhra Pradesh and Telangana",
|
35 |
+
"deep_translator_code": "te"
|
36 |
+
},
|
37 |
+
"bn": {
|
38 |
+
"name": "Bengali - বাংলা",
|
39 |
+
"description": "Official language of West Bengal and Bangladesh",
|
40 |
+
"deep_translator_code": "bn"
|
41 |
+
},
|
42 |
+
"mr": {
|
43 |
+
"name": "Marathi - मराठी",
|
44 |
+
"description": "Official language of Maharashtra",
|
45 |
+
"deep_translator_code": "mr"
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
class FileQueryTranslator:
|
50 |
+
def __init__(self, max_retries=3, retry_delay=1):
|
51 |
+
self.max_retries = max_retries
|
52 |
+
self.retry_delay = retry_delay
|
53 |
+
self.setup_device()
|
54 |
+
self.setup_model()
|
55 |
+
logger.info(f"Initialization complete. Using device: {self.device}")
|
56 |
+
|
57 |
+
def setup_device(self):
|
58 |
+
"""Setup CUDA device with error handling"""
|
59 |
+
try:
|
60 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
if self.device.type == "cuda":
|
62 |
+
# Check CUDA memory
|
63 |
+
torch.cuda.empty_cache()
|
64 |
+
logger.info(f"Available CUDA memory: {torch.cuda.get_device_properties(0).total_memory}")
|
65 |
+
except Exception as e:
|
66 |
+
logger.warning(f"Error setting up CUDA device: {e}. Falling back to CPU.")
|
67 |
+
self.device = torch.device("cpu")
|
68 |
+
|
69 |
+
def setup_model(self):
|
70 |
+
"""Initialize the model with retry mechanism"""
|
71 |
+
for attempt in range(self.max_retries):
|
72 |
+
try:
|
73 |
+
model_name = "facebook/opt-125m" # Using smaller model for stability
|
74 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
75 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
model_name,
|
77 |
+
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
|
78 |
+
)
|
79 |
+
|
80 |
+
if self.device.type == "cuda":
|
81 |
+
self.model = self.model.to(self.device)
|
82 |
+
torch.cuda.empty_cache() # Clear CUDA cache
|
83 |
+
else:
|
84 |
+
self.model = self.model.to(self.device)
|
85 |
+
|
86 |
+
logger.info(f"Model loaded successfully on {self.device}")
|
87 |
+
break
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Attempt {attempt + 1} failed: {str(e)}")
|
90 |
+
if attempt < self.max_retries - 1:
|
91 |
+
time.sleep(self.retry_delay)
|
92 |
+
else:
|
93 |
+
raise Exception("Failed to load model after maximum retries")
|
94 |
+
|
95 |
+
def extract_text_from_pdf(self, pdf_file: str) -> str:
|
96 |
+
"""Extract text from PDF with robust error handling"""
|
97 |
+
try:
|
98 |
+
if not os.path.exists(pdf_file):
|
99 |
+
raise FileNotFoundError(f"PDF file not found: {pdf_file}")
|
100 |
+
|
101 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
102 |
+
text = []
|
103 |
+
|
104 |
+
for page_num in range(len(pdf_reader.pages)):
|
105 |
+
try:
|
106 |
+
page = pdf_reader.pages[page_num]
|
107 |
+
text.append(page.extract_text())
|
108 |
+
except Exception as e:
|
109 |
+
logger.error(f"Error extracting text from page {page_num}: {e}")
|
110 |
+
text.append(f"[Error extracting page {page_num}]")
|
111 |
+
|
112 |
+
return "\n".join(text)
|
113 |
+
except Exception as e:
|
114 |
+
logger.error(f"Error processing PDF: {str(e)}")
|
115 |
+
return f"Error processing PDF: {str(e)}"
|
116 |
+
|
117 |
+
def extract_text_from_csv(self, csv_file: str) -> str:
|
118 |
+
"""Extract text from CSV with robust error handling"""
|
119 |
+
try:
|
120 |
+
if not os.path.exists(csv_file):
|
121 |
+
raise FileNotFoundError(f"CSV file not found: {csv_file}")
|
122 |
+
|
123 |
+
df = pd.read_csv(csv_file)
|
124 |
+
text = df.to_string(index=False)
|
125 |
+
|
126 |
+
return text
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error processing CSV: {str(e)}")
|
129 |
+
return f"Error processing CSV: {str(e)}"
|
130 |
+
|
131 |
+
def extract_text_from_xlsx(self, xlsx_file: str) -> str:
|
132 |
+
"""Extract text from XLSX with robust error handling"""
|
133 |
+
try:
|
134 |
+
if not os.path.exists(xlsx_file):
|
135 |
+
raise FileNotFoundError(f"XLSX file not found: {xlsx_file}")
|
136 |
+
|
137 |
+
df = pd.read_excel(xlsx_file)
|
138 |
+
text = df.to_string(index=False)
|
139 |
+
|
140 |
+
return text
|
141 |
+
except Exception as e:
|
142 |
+
logger.error(f"Error processing XLSX: {str(e)}")
|
143 |
+
return f"Error processing XLSX: {str(e)}"
|
144 |
+
|
145 |
+
def translate_text(self, text: str, target_lang: str) -> str:
|
146 |
+
"""Translate text using deep_translator with retry mechanism"""
|
147 |
+
for attempt in range(self.max_retries):
|
148 |
+
try:
|
149 |
+
translator = GoogleTranslator(source='auto', target=target_lang)
|
150 |
+
|
151 |
+
# Split text into chunks if it's too long (Google Translate limit)
|
152 |
+
max_chunk_size = 4500
|
153 |
+
chunks = [text[i:i + max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
154 |
+
|
155 |
+
translated_chunks = []
|
156 |
+
for chunk in chunks:
|
157 |
+
translated_chunk = translator.translate(chunk)
|
158 |
+
translated_chunks.append(translated_chunk)
|
159 |
+
time.sleep(0.5) # Rate limiting
|
160 |
+
|
161 |
+
return ' '.join(translated_chunks)
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Translation attempt {attempt + 1} failed: {str(e)}")
|
164 |
+
if attempt < self.max_retries - 1:
|
165 |
+
time.sleep(self.retry_delay)
|
166 |
+
else:
|
167 |
+
return f"Translation error: {str(e)}"
|
168 |
+
|
169 |
+
def process_query(self, file_path: str, file_type: str, query: str, language: str) -> str:
|
170 |
+
"""Process query with comprehensive error handling"""
|
171 |
+
try:
|
172 |
+
# Validate inputs
|
173 |
+
if not file_path or not os.path.exists(file_path):
|
174 |
+
return "Please provide a valid file."
|
175 |
+
if not query.strip():
|
176 |
+
return "Please provide a valid query."
|
177 |
+
if language not in LANGUAGE_MAPPING:
|
178 |
+
return "Please select a valid language."
|
179 |
+
|
180 |
+
# Extract text based on file type
|
181 |
+
if file_type == "pdf":
|
182 |
+
file_text = self.extract_text_from_pdf(file_path)
|
183 |
+
elif file_type == "csv":
|
184 |
+
file_text = self.extract_text_from_csv(file_path)
|
185 |
+
elif file_type == "xlsx":
|
186 |
+
file_text = self.extract_text_from_xlsx(file_path)
|
187 |
+
else:
|
188 |
+
return "Unsupported file type."
|
189 |
+
|
190 |
+
if file_text.startswith("Error"):
|
191 |
+
return file_text
|
192 |
+
|
193 |
+
# Generate response
|
194 |
+
prompt = f"Query: {query}\n\nContent: {file_text[:1000]}\n\nAnswer:" # Limit content length
|
195 |
+
|
196 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
197 |
+
with torch.no_grad():
|
198 |
+
output = self.model.generate(
|
199 |
+
input_ids,
|
200 |
+
max_new_tokens=200, # Use max_new_tokens instead of max_length
|
201 |
+
num_return_sequences=1,
|
202 |
+
temperature=0.7,
|
203 |
+
pad_token_id=self.tokenizer.eos_token_id
|
204 |
+
)
|
205 |
+
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
206 |
+
|
207 |
+
# Translate
|
208 |
+
target_lang = LANGUAGE_MAPPING[language]["deep_translator_code"]
|
209 |
+
translated_response = self.translate_text(response, target_lang)
|
210 |
+
|
211 |
+
return translated_response
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"Error in process_query: {str(e)}")
|
215 |
+
return f"An error occurred: {str(e)}"
|
216 |
+
|
217 |
+
# Gradio interface
|
218 |
+
def create_interface():
|
219 |
+
file_processor = FileQueryTranslator()
|
220 |
+
|
221 |
+
with gr.Blocks() as demo:
|
222 |
+
gr.Markdown("### File Query and Translation System")
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
with gr.Column():
|
226 |
+
file_input = gr.File(
|
227 |
+
label="Upload File (PDF, CSV, XLSX)",
|
228 |
+
type="filepath"
|
229 |
+
)
|
230 |
+
file_type_input = gr.Radio(
|
231 |
+
label="Select File Type",
|
232 |
+
choices=["pdf", "csv", "xlsx"],
|
233 |
+
value="pdf"
|
234 |
+
)
|
235 |
+
query_input = gr.Textbox(
|
236 |
+
label="Enter your question about the file",
|
237 |
+
placeholder="What would you like to know about the document?"
|
238 |
+
)
|
239 |
+
language_input = gr.Dropdown(
|
240 |
+
label="Select Output Language",
|
241 |
+
choices=[f"{code} - {info['name']}" for code, info in LANGUAGE_MAPPING.items()],
|
242 |
+
value="hi - Hindi - हिन्दी"
|
243 |
+
)
|
244 |
+
language_description = gr.Textbox(
|
245 |
+
label="Language Information",
|
246 |
+
value=LANGUAGE_MAPPING['hi']['description'],
|
247 |
+
interactive=False
|
248 |
+
)
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
output_text = gr.Textbox(
|
252 |
+
label="Translated Answer",
|
253 |
+
placeholder="Translation will appear here...",
|
254 |
+
lines=5
|
255 |
+
)
|
256 |
+
|
257 |
+
def update_description(selected):
|
258 |
+
code = selected.split(" - ")[0]
|
259 |
+
return LANGUAGE_MAPPING[code]['description']
|
260 |
+
|
261 |
+
def process_and_translate(file_path, file_type, query, language):
|
262 |
+
try:
|
263 |
+
lang_code = language.split(" - ")[0]
|
264 |
+
return file_processor.process_query(file_path, file_type, query, lang_code)
|
265 |
+
except Exception as e:
|
266 |
+
return f"Error processing request: {str(e)}"
|
267 |
+
|
268 |
+
# Event handlers
|
269 |
+
language_input.change(
|
270 |
+
fn=update_description,
|
271 |
+
inputs=[language_input],
|
272 |
+
outputs=[language_description]
|
273 |
+
)
|
274 |
+
|
275 |
+
submit_button = gr.Button("Get Answer")
|
276 |
+
submit_button.click(
|
277 |
+
fn=process_and_translate,
|
278 |
+
inputs=[file_input, file_type_input, query_input, language_input],
|
279 |
+
outputs=output_text
|
280 |
+
)
|
281 |
+
|
282 |
+
return demo
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
demo = create_interface()
|
286 |
+
demo.queue() # Enable queueing
|
287 |
+
demo.launch(share=True)
|