Spaces:
Running
Running
Anupam251272
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import BertTokenizer, BertModel
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
class EasyLearningPlatform:
|
14 |
+
def __init__(self):
|
15 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
logger.info(f"Using device: {self.device}")
|
17 |
+
self.initialize_models()
|
18 |
+
|
19 |
+
def initialize_models(self):
|
20 |
+
"""Initialize BERT model for processing"""
|
21 |
+
try:
|
22 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
23 |
+
self.model = BertModel.from_pretrained('bert-base-uncased').to(self.device)
|
24 |
+
except Exception as e:
|
25 |
+
logger.error(f"Error initializing models: {str(e)}")
|
26 |
+
raise
|
27 |
+
|
28 |
+
def process_learning_request(
|
29 |
+
self,
|
30 |
+
name: str,
|
31 |
+
age: int,
|
32 |
+
education_level: str,
|
33 |
+
interests: str,
|
34 |
+
learning_goal: str,
|
35 |
+
preferred_learning_style: str,
|
36 |
+
available_hours_per_week: int
|
37 |
+
):
|
38 |
+
"""Process user input and generate learning recommendations"""
|
39 |
+
try:
|
40 |
+
# Create user profile
|
41 |
+
profile = {
|
42 |
+
'name': name,
|
43 |
+
'age': age,
|
44 |
+
'education': education_level,
|
45 |
+
'interests': interests,
|
46 |
+
'goal': learning_goal,
|
47 |
+
'learning_style': preferred_learning_style,
|
48 |
+
'hours_available': available_hours_per_week
|
49 |
+
}
|
50 |
+
|
51 |
+
# Generate recommendations based on profile
|
52 |
+
recommendations = self.generate_recommendations(profile)
|
53 |
+
|
54 |
+
# Create response
|
55 |
+
return {
|
56 |
+
"status": "Success",
|
57 |
+
"personal_learning_path": recommendations['learning_path'],
|
58 |
+
"estimated_completion_time": recommendations['completion_time'],
|
59 |
+
"recommended_resources": recommendations['resources'],
|
60 |
+
"next_steps": recommendations['next_steps']
|
61 |
+
}
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
logger.error(f"Error processing request: {str(e)}")
|
65 |
+
return {
|
66 |
+
"status": "Error",
|
67 |
+
"message": "There was an error processing your request. Please try again."
|
68 |
+
}
|
69 |
+
|
70 |
+
def generate_recommendations(self, profile):
|
71 |
+
"""Generate personalized learning recommendations"""
|
72 |
+
# Simplified recommendation logic
|
73 |
+
learning_styles = {
|
74 |
+
'visual': ['video tutorials', 'infographics', 'diagrams'],
|
75 |
+
'auditory': ['podcasts', 'audio books', 'lectures'],
|
76 |
+
'reading/writing': ['textbooks', 'articles', 'written guides'],
|
77 |
+
'kinesthetic': ['practical exercises', 'hands-on projects', 'interactive tutorials']
|
78 |
+
}
|
79 |
+
|
80 |
+
# Get recommended resources based on learning style
|
81 |
+
preferred_resources = learning_styles.get(
|
82 |
+
profile['learning_style'].lower(),
|
83 |
+
learning_styles['visual'] # default to visual if style not found
|
84 |
+
)
|
85 |
+
|
86 |
+
# Calculate estimated completion time (simplified)
|
87 |
+
weekly_hours = min(max(profile['hours_available'], 1), 168) # Limit between 1 and 168 hours
|
88 |
+
estimated_weeks = 12 # Default to 12-week program
|
89 |
+
|
90 |
+
return {
|
91 |
+
'learning_path': [
|
92 |
+
f"Week 1-2: Introduction to {profile['goal']}",
|
93 |
+
f"Week 3-4: Fundamental Concepts",
|
94 |
+
f"Week 5-8: Core Skills Development",
|
95 |
+
f"Week 9-12: Advanced Topics and Projects"
|
96 |
+
],
|
97 |
+
'completion_time': f"{estimated_weeks} weeks at {weekly_hours} hours per week",
|
98 |
+
'resources': preferred_resources,
|
99 |
+
'next_steps': [
|
100 |
+
"1. Review your personalized learning path",
|
101 |
+
"2. Schedule your study time",
|
102 |
+
"3. Start with the recommended resources",
|
103 |
+
"4. Track your progress weekly"
|
104 |
+
]
|
105 |
+
}
|
106 |
+
|
107 |
+
def create_interface(self):
|
108 |
+
"""Create the Gradio interface"""
|
109 |
+
|
110 |
+
# Define the interface
|
111 |
+
iface = gr.Interface(
|
112 |
+
fn=self.process_learning_request,
|
113 |
+
inputs=[
|
114 |
+
gr.Textbox(label="Name"),
|
115 |
+
gr.Number(label="Age", minimum=1, maximum=120),
|
116 |
+
gr.Dropdown(
|
117 |
+
choices=[
|
118 |
+
"High School",
|
119 |
+
"Bachelor's Degree",
|
120 |
+
"Master's Degree",
|
121 |
+
"PhD",
|
122 |
+
"Other"
|
123 |
+
],
|
124 |
+
label="Education Level"
|
125 |
+
),
|
126 |
+
gr.Textbox(
|
127 |
+
label="Interests",
|
128 |
+
placeholder="e.g., programming, data science, web development"
|
129 |
+
),
|
130 |
+
gr.Textbox(
|
131 |
+
label="Learning Goal",
|
132 |
+
placeholder="What do you want to learn?"
|
133 |
+
),
|
134 |
+
gr.Dropdown(
|
135 |
+
choices=[
|
136 |
+
"Visual",
|
137 |
+
"Auditory",
|
138 |
+
"Reading/Writing",
|
139 |
+
"Kinesthetic"
|
140 |
+
],
|
141 |
+
label="Preferred Learning Style",
|
142 |
+
info="How do you learn best?"
|
143 |
+
),
|
144 |
+
gr.Slider(
|
145 |
+
minimum=1,
|
146 |
+
maximum=40,
|
147 |
+
value=10,
|
148 |
+
label="Available Hours per Week",
|
149 |
+
info="How many hours can you dedicate to learning each week?"
|
150 |
+
)
|
151 |
+
],
|
152 |
+
outputs=gr.JSON(label="Your Personalized Learning Plan"),
|
153 |
+
title="AI Learning Path Generator",
|
154 |
+
description="""
|
155 |
+
Welcome to your personalized learning journey!
|
156 |
+
|
157 |
+
Fill in your information below to get a customized learning path:
|
158 |
+
1. Enter your basic information
|
159 |
+
2. Specify your learning goals
|
160 |
+
3. Choose your preferred learning style
|
161 |
+
4. Set your weekly time commitment
|
162 |
+
Contact-: AJoshi 91-8847374914 email -joshianupam32@gmail.com
|
163 |
+
|
164 |
+
Click submit to generate your personalized learning plan!
|
165 |
+
""",
|
166 |
+
examples=[
|
167 |
+
[
|
168 |
+
"John Doe",
|
169 |
+
25,
|
170 |
+
"Bachelor's Degree",
|
171 |
+
"Machine Learning, Python",
|
172 |
+
"Learn Data Science",
|
173 |
+
"Visual",
|
174 |
+
10
|
175 |
+
],
|
176 |
+
[
|
177 |
+
"Jane Smith",
|
178 |
+
30,
|
179 |
+
"Master's Degree",
|
180 |
+
"Web Development, JavaScript",
|
181 |
+
"Full Stack Development",
|
182 |
+
"Kinesthetic",
|
183 |
+
15
|
184 |
+
]
|
185 |
+
]
|
186 |
+
)
|
187 |
+
return iface
|
188 |
+
|
189 |
+
def main():
|
190 |
+
# Create and launch the platform
|
191 |
+
platform = EasyLearningPlatform()
|
192 |
+
interface = platform.create_interface()
|
193 |
+
interface.launch(share=True)
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
"""
|
197 |
+
# Run these commands in Google Colab first:
|
198 |
+
!pip install gradio transformers torch numpy pandas scikit-learn
|
199 |
+
"""
|
200 |
+
main()
|