Spaces:
Sleeping
Sleeping
Commit
·
3e96ee0
1
Parent(s):
448ac8f
changed face detection model to yolo_mobilenet_backbone
Browse files
app/__init__.py
CHANGED
|
@@ -9,7 +9,8 @@ from face_recognition import helper as fr_helper
|
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
-
face_detector=fd.face_detection("face_detection/Models/v1")
|
|
|
|
| 13 |
face_detector.square_preprocessing=fd.square_pad()
|
| 14 |
# face_recognizer=fr.face_recognition("face_recognition/Models/v1")
|
| 15 |
# face_recognizer=fr.face_recognition("face_recognition/Models/mobilenet_basic_lfw")
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
+
# face_detector=fd.face_detection("face_detection/Models/v1")
|
| 13 |
+
face_detector=fd.face_detection("face_detection/Models/mobilenet")
|
| 14 |
face_detector.square_preprocessing=fd.square_pad()
|
| 15 |
# face_recognizer=fr.face_recognition("face_recognition/Models/v1")
|
| 16 |
# face_recognizer=fr.face_recognition("face_recognition/Models/mobilenet_basic_lfw")
|
face_detection/Models/mobilenet/anchors.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
1.374126791954040527e+00 1.648838758468627930e+00
|
| 2 |
+
3.987907886505126953e+00 4.713618278503417969e+00
|
| 3 |
+
2.353522062301635742e+00 2.840777397155761719e+00
|
| 4 |
+
6.863890647888183594e+00 8.402585983276367188e+00
|
| 5 |
+
6.510864496231079102e-01 7.812500000000000000e-01
|
face_detection/Models/mobilenet/config.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
p_thres=0.5
|
| 2 |
+
nms_thres=0.3
|
face_detection/Models/mobilenet/model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee8452826fb51076f13878d77119bd7834a946df3fb396002c7b756cd07ba64e
|
| 3 |
+
size 13201720
|
face_detection/Models/v1/model.h5
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a50e569a9d63bd7e30fb1107b3b9164e2f9e2512d4c98fd13f04ccad15365b2
|
| 3 |
+
size 202503752
|
face_detection/create_load_model.py
CHANGED
|
@@ -4,251 +4,38 @@ from tensorflow.keras import Model,layers
|
|
| 4 |
from face_detection.config import class_names
|
| 5 |
|
| 6 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
| 7 |
-
# custom layer for reshaping last layer
|
| 8 |
|
| 9 |
# custom layer for reshaping last layer
|
| 10 |
-
|
| 11 |
class yolo_reshape(tf.keras.layers.Layer):
|
| 12 |
-
global num_anchors
|
| 13 |
-
def __init__(self, **kwargs):
|
| 14 |
-
super(yolo_reshape,self).__init__()
|
| 15 |
-
self.last_item=(5+len(class_names))
|
| 16 |
-
def call(self,output_layer):
|
| 17 |
-
shape = [tf.shape(output_layer)[k] for k in range(4)]
|
| 18 |
-
# print(shape)
|
| 19 |
-
# tf.print(shape)
|
| 20 |
-
return tf.reshape(output_layer,[shape[0],shape[1],shape[2],num_anchors,self.last_item])
|
| 21 |
-
|
| 22 |
-
def create_model():
|
| 23 |
-
global num_anchors
|
| 24 |
-
def space_to_depth_x2(x):
|
| 25 |
-
return tf.nn.space_to_depth(x,block_size=2)
|
| 26 |
-
|
| 27 |
-
x_input=layers.Input(shape=(None,None,3))
|
| 28 |
-
x=layers.Lambda(lambda x:x/255.)(x_input)
|
| 29 |
-
x=layers.Conv2D(32,(3,3),strides=(1,1),padding='same',name='conv_1',use_bias=False)(x)
|
| 30 |
-
x=layers.BatchNormalization(name='norm_1')(x)
|
| 31 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 32 |
-
x=layers.MaxPooling2D(pool_size=(2,2))(x)
|
| 33 |
-
|
| 34 |
-
x=layers.Conv2D(64,(3,3),strides=(1,1),padding='same',name='conv_2',use_bias=False)(x)
|
| 35 |
-
x=layers.BatchNormalization(name='norm_2')(x)
|
| 36 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 37 |
-
x=layers.MaxPooling2D(pool_size=(2,2))(x)
|
| 38 |
-
|
| 39 |
-
x=layers.Conv2D(128,(3,3),strides=(1,1),padding='same',name='conv_3',use_bias=False)(x)
|
| 40 |
-
x=layers.BatchNormalization(name='norm_3')(x)
|
| 41 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 42 |
-
|
| 43 |
-
x=layers.Conv2D(64,(1,1),strides=(1,1),padding='same',name='conv_4',use_bias=False)(x)
|
| 44 |
-
x=layers.BatchNormalization(name='norm_4')(x)
|
| 45 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 46 |
-
|
| 47 |
-
x=layers.Conv2D(128,(3,3),strides=(1,1),padding='same',name='conv_5',use_bias=False)(x)
|
| 48 |
-
x=layers.BatchNormalization(name='norm_5')(x)
|
| 49 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 50 |
-
x=layers.MaxPooling2D(pool_size=(2,2))(x)
|
| 51 |
-
|
| 52 |
-
x=layers.Conv2D(256,(3,3),strides=(1,1),padding='same',name='conv_6',use_bias=False)(x)
|
| 53 |
-
x=layers.BatchNormalization(name='norm_6')(x)
|
| 54 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 55 |
-
|
| 56 |
-
x=layers.Conv2D(128,(1,1),strides=(1,1),padding='same',name='conv_7',use_bias=False)(x)
|
| 57 |
-
x=layers.BatchNormalization(name='norm_7')(x)
|
| 58 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 59 |
-
|
| 60 |
-
x=layers.Conv2D(256,(3,3),strides=(1,1),padding='same',name='conv_8',use_bias=False)(x)
|
| 61 |
-
x=layers.BatchNormalization(name='norm_8')(x)
|
| 62 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 63 |
-
x=layers.MaxPooling2D(pool_size=(2,2))(x)
|
| 64 |
-
|
| 65 |
-
x=layers.Conv2D(512,(3,3),strides=(1,1),padding='same',name='conv_9',use_bias=False)(x)
|
| 66 |
-
x=layers.BatchNormalization(name='norm_9')(x)
|
| 67 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 68 |
-
|
| 69 |
-
x=layers.Conv2D(256,(1,1),strides=(1,1),padding='same',name='conv_10',use_bias=False)(x)
|
| 70 |
-
x=layers.BatchNormalization(name='norm_10')(x)
|
| 71 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 72 |
-
|
| 73 |
-
x=layers.Conv2D(512,(3,3),strides=(1,1),padding='same',name='conv_11',use_bias=False)(x)
|
| 74 |
-
x=layers.BatchNormalization(name='norm_11')(x)
|
| 75 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 76 |
-
|
| 77 |
-
x=layers.Conv2D(256,(1,1),strides=(1,1),padding='same',name='conv_12',use_bias=False)(x)
|
| 78 |
-
x=layers.BatchNormalization(name='norm_12')(x)
|
| 79 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 80 |
-
|
| 81 |
-
x=layers.Conv2D(512,(3,3),strides=(1,1),padding='same',name='conv_13',use_bias=False)(x)
|
| 82 |
-
x=layers.BatchNormalization(name='norm_13')(x)
|
| 83 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 84 |
-
|
| 85 |
-
skip_connection = x
|
| 86 |
-
|
| 87 |
-
x=layers.MaxPooling2D(pool_size=(2,2))(x)
|
| 88 |
-
|
| 89 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_14',use_bias=False)(x)
|
| 90 |
-
x=layers.BatchNormalization(name='norm_14')(x)
|
| 91 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 92 |
-
|
| 93 |
-
x=layers.Conv2D(512,(1,1),strides=(1,1),padding='same',name='conv_15',use_bias=False)(x)
|
| 94 |
-
x=layers.BatchNormalization(name='norm_15')(x)
|
| 95 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 96 |
-
|
| 97 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_16',use_bias=False)(x)
|
| 98 |
-
x=layers.BatchNormalization(name='norm_16')(x)
|
| 99 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 100 |
-
|
| 101 |
-
x=layers.Conv2D(512,(1,1),strides=(1,1),padding='same',name='conv_17',use_bias=False)(x)
|
| 102 |
-
x=layers.BatchNormalization(name='norm_17')(x)
|
| 103 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 104 |
-
|
| 105 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_18',use_bias=False)(x)
|
| 106 |
-
x=layers.BatchNormalization(name='norm_18')(x)
|
| 107 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 108 |
-
|
| 109 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_19',use_bias=False)(x)
|
| 110 |
-
x=layers.BatchNormalization(name='norm_19')(x)
|
| 111 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 112 |
-
|
| 113 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_20',use_bias=False)(x)
|
| 114 |
-
x=layers.BatchNormalization(name='norm_20')(x)
|
| 115 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
x=layers.concatenate([skip_connection,x])
|
| 123 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_22',use_bias=False)(x)
|
| 124 |
-
x=layers.BatchNormalization(name='norm_22')(x)
|
| 125 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 126 |
-
|
| 127 |
-
x=layers.Conv2D((num_anchors*(5+len(class_names))),(1,1),strides=(1,1),padding='same',name='conv_23')(x)
|
| 128 |
-
out=yolo_reshape()(x)
|
| 129 |
-
|
| 130 |
-
model=Model(x_input,out,name='yolo_v2_model')
|
| 131 |
-
# model.summary()
|
| 132 |
-
return model
|
| 133 |
-
|
| 134 |
-
def create_tiny_model():
|
| 135 |
-
global num_anchors
|
| 136 |
-
|
| 137 |
-
x_input=layers.Input(shape=(416,416,3))
|
| 138 |
-
x=layers.Lambda(lambda x:x/255.)(x_input)
|
| 139 |
-
x=layers.Conv2D(16,(3,3),strides=(1,1),padding='same',name='conv_1',use_bias=False)(x)
|
| 140 |
-
x=layers.BatchNormalization(name='norm_1')(x)
|
| 141 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 142 |
-
x=layers.MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
| 143 |
-
|
| 144 |
-
x=layers.Conv2D(32,(3,3),strides=(1,1),padding='same',name='conv_2',use_bias=False)(x)
|
| 145 |
-
x=layers.BatchNormalization(name='norm_2')(x)
|
| 146 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 147 |
-
x=layers.MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
| 148 |
-
|
| 149 |
-
x=layers.Conv2D(64,(3,3),strides=(1,1),padding='same',name='conv_3',use_bias=False)(x)
|
| 150 |
-
x=layers.BatchNormalization(name='norm_3')(x)
|
| 151 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 152 |
-
x=layers.MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
| 153 |
-
|
| 154 |
-
x=layers.Conv2D(128,(3,3),strides=(1,1),padding='same',name='conv_4',use_bias=False)(x)
|
| 155 |
-
x=layers.BatchNormalization(name='norm_4')(x)
|
| 156 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 157 |
-
x=layers.MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
| 158 |
-
|
| 159 |
-
x=layers.Conv2D(256,(3,3),strides=(1,1),padding='same',name='conv_5',use_bias=False)(x)
|
| 160 |
-
x=layers.BatchNormalization(name='norm_5')(x)
|
| 161 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 162 |
-
x=layers.MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
| 163 |
-
|
| 164 |
-
x=layers.Conv2D(512,(3,3),strides=(1,1),padding='same',name='conv_6',use_bias=False)(x)
|
| 165 |
-
x=layers.BatchNormalization(name='norm_6')(x)
|
| 166 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 167 |
-
# x=layers.MaxPooling2D(pool_size=(2,2),strides=(1,1))(x)
|
| 168 |
-
|
| 169 |
-
x=layers.Conv2D(1024,(3,3),strides=(1,1),padding='same',name='conv_7',use_bias=False)(x)
|
| 170 |
-
x=layers.BatchNormalization(name='norm_7')(x)
|
| 171 |
-
x=layers.LeakyReLU(alpha=0.1)(x)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
x=layers.Conv2D((num_anchors*(5+len(class_names))),(1,1),strides=(1,1),padding='same',name='conv_9')(x)
|
| 179 |
-
out=yolo_reshape()(x)
|
| 180 |
-
|
| 181 |
-
model=Model(x_input,out,name='yolo_v2_tiny_model')
|
| 182 |
-
# model.summary()
|
| 183 |
-
return model
|
| 184 |
|
| 185 |
def load_model(path):
|
| 186 |
-
|
| 187 |
-
model=create_model()
|
| 188 |
-
model.load_weights(path)
|
| 189 |
-
# model=tf.keras.models.load_model(path)
|
| 190 |
return model
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
import struct
|
| 194 |
-
|
| 195 |
-
def get_original_weights(model,path_to_weight = "./yolov2-voc.weights"):
|
| 196 |
-
global num_anchors
|
| 197 |
-
# path_to_weight = "./yolov2.weights"(trained on coco dataset (80 classes))
|
| 198 |
-
if "yolov2-voc.weights" in path_to_weight: offset=5;nb_conv = 23;
|
| 199 |
-
if "darknet19_448.conv.23" in path_to_weight: offset=4;nb_conv = 18;
|
| 200 |
-
if "yolov2-tiny-voc.weights" in path_to_weight: offset=4;nb_conv = 9;
|
| 201 |
-
print(offset,nb_conv)
|
| 202 |
-
|
| 203 |
-
class WeightReader:
|
| 204 |
-
def __init__(self, weight_file):
|
| 205 |
-
self.offset = offset # an offset of 5 as first 5 values are non weight values(they are weight header)(for yolov2-voc.weights)
|
| 206 |
-
# self.all_weights = np.fromfile(weight_file, dtype='float32')
|
| 207 |
-
self.all_weights = open(weight_file,'rb')
|
| 208 |
-
weight_header=struct.unpack(f'{offset}i', self.all_weights.read(offset*4))
|
| 209 |
-
# print("weight Header(major, minor, revision, seen):",weight_header)
|
| 210 |
-
|
| 211 |
-
def read_bytes(self, size):
|
| 212 |
-
weights = struct.unpack('%df' % size, self.all_weights.read(size*4))
|
| 213 |
-
# print(weights)
|
| 214 |
-
# input("wait now forever")
|
| 215 |
-
return np.array(weights)
|
| 216 |
-
|
| 217 |
-
weight_reader = WeightReader(path_to_weight)
|
| 218 |
-
# print("all_weights = {}".format(np.fromfile(path_to_weight, dtype='float32').shape[0]-weight_reader.offset))
|
| 219 |
-
|
| 220 |
-
for i in range(1, nb_conv+1):
|
| 221 |
-
conv_layer = model.get_layer('conv_' + str(i))
|
| 222 |
-
|
| 223 |
-
if i < nb_conv:
|
| 224 |
-
norm_layer = model.get_layer('norm_' + str(i))
|
| 225 |
-
|
| 226 |
-
size = np.prod(norm_layer.get_weights()[0].shape)
|
| 227 |
-
|
| 228 |
-
beta = weight_reader.read_bytes(size)
|
| 229 |
-
gamma = weight_reader.read_bytes(size)
|
| 230 |
-
mean = weight_reader.read_bytes(size)
|
| 231 |
-
var = weight_reader.read_bytes(size)
|
| 232 |
-
|
| 233 |
-
weights = norm_layer.set_weights([gamma, beta, mean, var])
|
| 234 |
-
|
| 235 |
-
if len(conv_layer.get_weights()) > 1:
|
| 236 |
-
bias = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[1].shape))
|
| 237 |
-
kernel = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape))
|
| 238 |
-
kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
|
| 239 |
-
kernel = kernel.transpose([2,3,1,0])
|
| 240 |
-
# print(kernel.shape)
|
| 241 |
-
kernel=kernel.reshape([*kernel.shape[:-1],num_anchors,-1]) # reshape to this format so we change change position of p idx
|
| 242 |
-
idx=4 # in darknet each object was encoded as [x,y,w,h,p,c] but we use [p,x,y,w,h,c]
|
| 243 |
-
kernel=np.concatenate([kernel[...,idx:idx+1],kernel[...,:idx],kernel[...,idx+1:]],axis=-1) # setting p to idx 0
|
| 244 |
-
# print(kernel.shape)
|
| 245 |
-
kernel=kernel.reshape([*kernel.shape[:-2],-1])
|
| 246 |
-
# print(kernel.shape)
|
| 247 |
-
conv_layer.set_weights([kernel, bias])
|
| 248 |
-
else:
|
| 249 |
-
kernel = weight_reader.read_bytes(np.prod(conv_layer.get_weights()[0].shape))
|
| 250 |
-
kernel = kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))
|
| 251 |
-
kernel = kernel.transpose([2,3,1,0])
|
| 252 |
-
conv_layer.set_weights([kernel])
|
| 253 |
-
|
| 254 |
-
return model
|
|
|
|
| 4 |
from face_detection.config import class_names
|
| 5 |
|
| 6 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
|
|
|
| 7 |
|
| 8 |
# custom layer for reshaping last layer
|
|
|
|
| 9 |
class yolo_reshape(tf.keras.layers.Layer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def __init__(self,num_anchors,last_item, **kwargs):
|
| 12 |
+
super(yolo_reshape, self).__init__(**kwargs)
|
| 13 |
+
self.last_item=last_item
|
| 14 |
+
self.num_anchors=num_anchors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def call(self,output_layer):
|
| 17 |
+
shape = [tf.shape(output_layer)[k] for k in range(4)]
|
| 18 |
+
return tf.reshape(output_layer,[shape[0],shape[1],shape[2],self.num_anchors,self.last_item])
|
| 19 |
+
|
| 20 |
+
def compute_output_shape(self, input_shape):
|
| 21 |
+
return (input_shape[0],input_shape[1],input_shape[2],num_anchors,self.last_item, self.num_anchors,self.last_item)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_config(self):
|
| 25 |
+
config = super(yolo_reshape, self).get_config()
|
| 26 |
+
config.update(
|
| 27 |
+
{
|
| 28 |
+
"last_item": self.last_item,
|
| 29 |
+
"num_anchors": self.num_anchors
|
| 30 |
+
}
|
| 31 |
+
)
|
| 32 |
+
return config
|
| 33 |
|
| 34 |
+
@classmethod
|
| 35 |
+
def from_config(cls, config):
|
| 36 |
+
return cls(**config)
|
| 37 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def load_model(path):
|
| 40 |
+
model=tf.keras.models.load_model(path,compile=False,custom_objects={"yolo_reshape":yolo_reshape})
|
|
|
|
|
|
|
|
|
|
| 41 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test.py
CHANGED
|
@@ -12,25 +12,23 @@ def new_distance(vectors):
|
|
| 12 |
path="face_recognition/Models/mobilenet_basic_lfw/mobilenet_basic_lfw_model.h5"
|
| 13 |
# path="face_recognition/Models/keras_mobilenet_emore_adamw/keras_mobilenet_emore_adamw.h5"
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
x_input=tf.keras.layers.Input(shape=(112,112,3))
|
| 18 |
x_preprocess=tf.keras.layers.Lambda(lambda x:(x - 127.5) * 0.0078125)(x_input)
|
| 19 |
-
x=
|
| 20 |
x=tf.keras.layers.Lambda(lambda x:tf.math.l2_normalize(x, axis=-1))(x)
|
| 21 |
model2=tf.keras.Model(x_input,x)
|
| 22 |
# model2.summary()
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
-
# cv2.imread("")
|
| 26 |
-
# for layer in model2.layers:
|
| 27 |
-
# if isinstance(layer,tf.keras.layers.Activation):
|
| 28 |
-
# print(layer.activation)
|
| 29 |
|
| 30 |
img1=cv2.resize(cv2.imread("C:/Users/Home/Desktop/college stuff/vasu_dataset/all/priyanshi/7.jpg")[:,:,::-1],[112,112])[None]
|
| 31 |
img2=cv2.resize(cv2.imread("C:/Users/Home/Desktop/college stuff/vasu_dataset/all/shivansh/12.jpg")[:,:,::-1],[112,112])[None]
|
| 32 |
-
v1=(
|
| 33 |
-
v2=(
|
| 34 |
|
| 35 |
|
| 36 |
print("euclidean_distance:",euclidean_distance([v1,v2]))
|
|
@@ -38,9 +36,4 @@ print("new_distance:",new_distance([v1,v2]))
|
|
| 38 |
if(new_distance([v1,v2])[0]>0.2830035090446472):
|
| 39 |
print("matching")
|
| 40 |
else:
|
| 41 |
-
print("not matching")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
model2.save(path.rsplit("/",1)[0]+"/model.h5")
|
| 46 |
-
print("model save to :\t",path.rsplit("/",1)[0]+"/model.h5")
|
|
|
|
| 12 |
path="face_recognition/Models/mobilenet_basic_lfw/mobilenet_basic_lfw_model.h5"
|
| 13 |
# path="face_recognition/Models/keras_mobilenet_emore_adamw/keras_mobilenet_emore_adamw.h5"
|
| 14 |
|
| 15 |
+
model=tf.keras.models.load_model(path,compile=False)
|
| 16 |
|
| 17 |
x_input=tf.keras.layers.Input(shape=(112,112,3))
|
| 18 |
x_preprocess=tf.keras.layers.Lambda(lambda x:(x - 127.5) * 0.0078125)(x_input)
|
| 19 |
+
x=model(x_preprocess,training=False)
|
| 20 |
x=tf.keras.layers.Lambda(lambda x:tf.math.l2_normalize(x, axis=-1))(x)
|
| 21 |
model2=tf.keras.Model(x_input,x)
|
| 22 |
# model2.summary()
|
| 23 |
+
# model.save(path.rsplit("/",1)[0]+"/model.h5")
|
| 24 |
+
# print("model save to :\t",path.rsplit("/",1)[0]+"/model.h5")
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
img1=cv2.resize(cv2.imread("C:/Users/Home/Desktop/college stuff/vasu_dataset/all/priyanshi/7.jpg")[:,:,::-1],[112,112])[None]
|
| 29 |
img2=cv2.resize(cv2.imread("C:/Users/Home/Desktop/college stuff/vasu_dataset/all/shivansh/12.jpg")[:,:,::-1],[112,112])[None]
|
| 30 |
+
v1=(model.predict(img1,verbose=0))
|
| 31 |
+
v2=(model.predict(img2,verbose=0))
|
| 32 |
|
| 33 |
|
| 34 |
print("euclidean_distance:",euclidean_distance([v1,v2]))
|
|
|
|
| 36 |
if(new_distance([v1,v2])[0]>0.2830035090446472):
|
| 37 |
print("matching")
|
| 38 |
else:
|
| 39 |
+
print("not matching")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|