Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TextClassificationPipeline | |
| import operator | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| def get_sentiment(out): | |
| d = dict() | |
| for k in out: | |
| print(k) | |
| label = k['label'] | |
| score = k['score'] | |
| d[label] = score | |
| winning_lab = max(d.items(), key=operator.itemgetter(1))[0] | |
| winning_score = d[winning_lab] | |
| df = pd.DataFrame.from_dict(d, orient = 'index') | |
| return df #winning_lab, winning_score | |
| model_name = "Anthos23/FS-distilroberta-fine-tuned" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) | |
| text = st.text_area(f'Ciao! This app uses {model_name}.\nEnter your text to test it ❤️') | |
| if text: | |
| out = pipe(text) | |
| df = get_sentiment(out[0]) | |
| fig, ax = plt.subplots() | |
| c = ['#C34A36', '#FFC75F', '#008F7A'] | |
| ax.bar(df.index, df[0], color=c, width=0.4) | |
| st.pyplot(fig) | |
| #st.json(get_sentiment(out[0][0])) | |