Spaces:
Build error
Build error
Merge branch 'main' of hf.co:spaces/Anthony-Ml/covid_predictor
Browse files- Gradcam.png +0 -0
- app.py +52 -17
- requirements.txt +8 -1
Gradcam.png
ADDED
![]() |
app.py
CHANGED
@@ -2,6 +2,56 @@ import gradio as gr
|
|
2 |
from fastai.vision.all import *
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
#learn = load_learner('model/predictcovidfastaifinal18102023.pkl')
|
6 |
learn = load_learner('model/final_20102023_eb7_model.pkl')
|
7 |
|
@@ -11,24 +61,9 @@ def predict_image(get_image):
|
|
11 |
pred, idx, probs = learn.predict(get_image)
|
12 |
return dict(zip(categories, map(float, probs)))
|
13 |
|
14 |
-
|
15 |
-
description = """
|
16 |
-
This Space demonstrates model based on efficientnet base model.
|
17 |
-
|
18 |
-
The model is trained using [anasmohammedtahir/covidqu](https://www.kaggle.com/datasets/anasmohammedtahir/covidqu) dataset
|
19 |
-
"""
|
20 |
-
examples = [
|
21 |
-
['covid/covid_1038.png'], ['covid/covid_1034.png'],
|
22 |
-
['covid/cd.png'], ['covid/covid_1021.png'],
|
23 |
-
['covid/covid_1027.png'], ['covid/covid_1042.png'],
|
24 |
-
['covid/covid_1031.png']]
|
25 |
-
|
26 |
-
article="<p style='text-align: center'><a href='https://www.kaggle.com/datasets/anasmohammedtahir/covidqu' target='_blank'>COVID-QU-Ex Dataset</a></p>"
|
27 |
-
interpretation="shap"
|
28 |
-
num_shap=5
|
29 |
enable_queue=True
|
30 |
|
31 |
-
|
32 |
gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
|
33 |
-
outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples,
|
34 |
|
|
|
2 |
from fastai.vision.all import *
|
3 |
from efficientnet_pytorch import EfficientNet
|
4 |
|
5 |
+
import torch, torchvision
|
6 |
+
from torchvision import transforms
|
7 |
+
from pytorch_grad_cam import GradCAM
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
title = "COVID_19 Infection Detectation App!"
|
12 |
+
head = (
|
13 |
+
"<body>"
|
14 |
+
"<center>"
|
15 |
+
"<img src='/file=Gradcam.png' width=200>"
|
16 |
+
"<h2>"
|
17 |
+
"This Space demonstrates a model based on efficientnetB7 base model. The Model was trained to classify chest xray image. To test it, "
|
18 |
+
"</h2>"
|
19 |
+
"<h3>"
|
20 |
+
"Use the Example Images provided below the up or Upload your own xray images with the App."
|
21 |
+
"</h3>"
|
22 |
+
"<h3>"
|
23 |
+
"!!!PLEASE NOTE MODEL WAS TRAINED and VALIDATED USING PNG FILES!!!"
|
24 |
+
"</h3>"
|
25 |
+
"</center>"
|
26 |
+
"<p>"
|
27 |
+
"<b>""<a href='https://www.kaggle.com/datasets/anasmohammedtahir/covidqu'>The model is trained using COVID-QU-Ex dataset</a>""</b>"
|
28 |
+
" that the researchers from Qatar University compiled,that consists of 33,920 chest X-ray (CXR) images including:"
|
29 |
+
"</p>"
|
30 |
+
"<ul>"
|
31 |
+
"<li>"
|
32 |
+
"11,956 COVID-19"
|
33 |
+
"</li>"
|
34 |
+
"<li>"
|
35 |
+
"11,263 Non-COVID infections (Viral or Bacterial Pneumonia)"
|
36 |
+
"</li>"
|
37 |
+
"<li>"
|
38 |
+
"10,701 Normal"
|
39 |
+
"</li>"
|
40 |
+
"</ul>"
|
41 |
+
"<p>"
|
42 |
+
"Thanks to Kaggle & KaggleX, this is the largest ever created lung mask dataset, that I am aware of publicly available as of October 2023."
|
43 |
+
"</p>"
|
44 |
+
"</body>"
|
45 |
+
)
|
46 |
+
description = head
|
47 |
+
|
48 |
+
examples = [
|
49 |
+
['covid/covid_1038.png'], ['covid/covid_1034.png'],
|
50 |
+
['covid/cd.png'], ['covid/covid_1021.png'],
|
51 |
+
['covid/covid_1027.png'], ['covid/covid_1042.png'],
|
52 |
+
['covid/covid_1031.png']
|
53 |
+
]
|
54 |
+
|
55 |
#learn = load_learner('model/predictcovidfastaifinal18102023.pkl')
|
56 |
learn = load_learner('model/final_20102023_eb7_model.pkl')
|
57 |
|
|
|
61 |
pred, idx, probs = learn.predict(get_image)
|
62 |
return dict(zip(categories, map(float, probs)))
|
63 |
|
64 |
+
interpretation= 'shap'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
enable_queue=True
|
66 |
|
|
|
67 |
gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)),
|
68 |
+
outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)
|
69 |
|
requirements.txt
CHANGED
@@ -1,2 +1,9 @@
|
|
1 |
fastai
|
2 |
-
efficientnet-pytorch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
fastai
|
2 |
+
efficientnet-pytorch
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
torch-lr-finder
|
6 |
+
pytorch-lightning
|
7 |
+
grad-cam
|
8 |
+
pillow
|
9 |
+
numpy
|