NaturalLanguageProcessing / function /lstm_preprocessing.py
AntNikYab's picture
Upload lstm_preprocessing.py
a14e97f
raw
history blame
5.48 kB
import re
import string
import numpy as np
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertModel
from sklearn.linear_model import LogisticRegression
from nltk.stem import SnowballStemmer
from nltk.corpus import stopwords
stop_words = set(stopwords.words('russian'))
stemmer = SnowballStemmer('russian')
sw = stopwords.words('russian')
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
class LSTMClassifier(nn.Module):
def __init__(self, embedding_dim: int, hidden_size:int, embedding: torch.nn.modules.sparse.Embedding) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.hidden_size = hidden_size
self.embedding = embedding
self.lstm = nn.LSTM(
input_size=self.embedding_dim,
hidden_size=self.hidden_size,
batch_first=True
)
self.clf = nn.Linear(self.hidden_size, 1)
def forward(self, x):
embeddings = self.embedding(x)
_, (h_n, _) = self.lstm(embeddings)
out = self.clf(h_n.squeeze())
return out
def data_preprocessing(text: str) -> str:
"""preprocessing string: lowercase, removing html-tags, punctuation,
stopwords, digits
Args:
text (str): input string for preprocessing
Returns:
str: preprocessed string
"""
text = text.lower()
text = re.sub('<.*?>', '', text) # html tags
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
text = ' '.join([word for word in text.split() if word not in stop_words])
text = [word for word in text.split() if not word.isdigit()]
text = ' '.join(text)
return text
def get_words_by_freq(sorted_words: list, n: int = 10) -> list:
return list(filter(lambda x: x[1] > n, sorted_words))
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore
"""Make left-sided padding for input list of tokens
Args:
review_int (list): input list of tokens
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
Returns:
np.array: padded sequences
"""
features = np.zeros((len(review_int), seq_len), dtype = int)
for i, review in enumerate(review_int):
if len(review) <= seq_len:
zeros = list(np.zeros(seq_len - len(review)))
new = zeros + review
else:
new = review[: seq_len]
features[i, :] = np.array(new)
return features
def preprocess_single_string(
input_string: str,
seq_len: int,
vocab_to_int: dict,
) -> torch.tensor:
"""Function for all preprocessing steps on a single string
Args:
input_string (str): input single string for preprocessing
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int.
Returns:
list: preprocessed string
"""
preprocessed_string = data_preprocessing(input_string)
result_list = []
for word in preprocessed_string.split():
try:
result_list.append(vocab_to_int[word])
except KeyError as e:
print(f'{e}: not in dictionary!')
result_padded = padding([result_list], seq_len)[0]
return torch.tensor(result_padded)
def predict_sentence(text: str, model: nn.Module, seq_len: int, vocab_to_int: dict) -> str:
p_str = preprocess_single_string(text, seq_len, vocab_to_int).unsqueeze(0)
model.eval()
pred = model(p_str)
output = pred.sigmoid().round().item()
if output == 0:
return 'Негативный отзыв'
else:
return 'Позитивный отзыв'
def predict_single_string(text: str,
model: BertModel,
loaded_model: LogisticRegression
) -> str:
with torch.no_grad():
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
vector = output[0][:,0,:]
pred0 = loaded_model.predict_proba(vector)[0][0]
pred1 = loaded_model.predict_proba(vector)[0][1]
if pred0 > pred1:
return 'Негативный отзыв'
else:
return 'Позитивный отзыв'
def clean(text):
text = text.lower()
text = re.sub(r'\s+', ' ', text) # заменить два и более пробела на один пробел
text = re.sub(r'\d+', ' ', text) # удаляем числа
text = text.translate(str.maketrans('', '', string.punctuation)) # удаляем знаки пунктуации
text = re.sub(r'\n+', ' ', text) # удаляем символ перевод строки
return text
def tokin(text):
text = clean(text)
text = ' '.join([stemmer.stem(word) for word in text.split()])
text = ' '.join([word for word in text.split() if word not in sw])
return text
def predict_ml_class(text, loaded_vectorizer, loaded_classifier):
t = tokin(text).split(' ')
new_text_bow = loaded_vectorizer.transform(t)
predicted_label = loaded_classifier.predict(new_text_bow)
if predicted_label == 0:
return 'Негативный отзыв'
else:
return 'Позитивный отзыв'