AnshulS commited on
Commit
d93bcf7
·
verified ·
1 Parent(s): 24f19c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +140 -0
app.py CHANGED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import gradio as gr
3
+ from retriever import get_relevant_passages
4
+ from reranker import rerank
5
+
6
+ # Load and clean CSV
7
+ def clean_df(df):
8
+ df = df.copy()
9
+
10
+ # Get column names for reference
11
+ print(f"Original columns: {df.columns}")
12
+
13
+ # Ensure clean URLs from the second column
14
+ second_col = df.iloc[:, 3].astype(str) # Pre-packaged Job Solutions column
15
+
16
+ if second_col.str.contains('http').any() or second_col.str.contains('www').any():
17
+ df["url"] = second_col # Already has full URLs
18
+ else:
19
+ # Create full URLs from IDs
20
+ df["url"] = "https://www.shl.com" + second_col.str.replace(r'^(?!/)', '/', regex=True)
21
+
22
+ # Map T/F to Yes/No for remote testing and adaptive support
23
+ df["remote_support"] = df.iloc[:, 4].map(lambda x: "Yes" if x == "T" else "No")
24
+ df["adaptive_support"] = df.iloc[:, 5].map(lambda x: "Yes" if x == "T" else "No")
25
+
26
+ # Handle test_type properly - convert string representation of list to actual list
27
+ df["test_type"] = df.iloc[:, 6].apply(lambda x: eval(x) if isinstance(x, str) else x)
28
+
29
+ # Get description from column 7
30
+ df["description"] = df.iloc[:, 7]
31
+
32
+ # Extract duration with error handling from column 10
33
+ df["duration"] = pd.to_numeric(
34
+ df.iloc[:, 10].astype(str).str.extract(r'(\d+)')[0],
35
+ errors='coerce'
36
+ )
37
+
38
+ # Print sample of cleaned data for debugging
39
+ print(f"Sample of cleaned data: {df[['url', 'adaptive_support', 'remote_support', 'description', 'duration', 'test_type']].head(2)}")
40
+
41
+ return df[["url", "adaptive_support", "remote_support", "description", "duration", "test_type"]]
42
+
43
+ try:
44
+ # Load CSV with explicit encoding
45
+ df = pd.read_csv("assesments.csv", encoding='utf-8')
46
+ print(f"CSV loaded successfully with {len(df)} rows")
47
+ df_clean = clean_df(df)
48
+ except Exception as e:
49
+ print(f"Error loading or cleaning data: {e}")
50
+ # Create an empty DataFrame with required columns as fallback
51
+ df_clean = pd.DataFrame(columns=["url", "adaptive_support", "remote_support",
52
+ "description", "duration", "test_type"])
53
+
54
+ def validate_and_fix_urls(candidates):
55
+ """Validates and fixes URLs in candidate assessments."""
56
+ for candidate in candidates:
57
+ # Skip if candidate is not a dictionary
58
+ if not isinstance(candidate, dict):
59
+ continue
60
+
61
+ # Ensure URL exists
62
+ if 'url' not in candidate or not candidate['url']:
63
+ candidate['url'] = 'https://www.shl.com/missing-url'
64
+ continue
65
+
66
+ url = str(candidate['url'])
67
+
68
+ # Fix URLs that are just numbers
69
+ if url.isdigit():
70
+ candidate['url'] = f"https://www.shl.com/{url}"
71
+ continue
72
+
73
+ # Add protocol if missing
74
+ if not url.startswith(('http://', 'https://')):
75
+ candidate['url'] = f"https://www.shl.com{url}" if url.startswith('/') else f"https://www.shl.com/{url}"
76
+
77
+ return candidates
78
+
79
+ def recommend(query):
80
+ if not query.strip():
81
+ return {"error": "Please enter a job description"}
82
+
83
+ try:
84
+ # Print some debug info
85
+ print(f"Processing query: {query[:50]}...")
86
+
87
+ # Get relevant passages
88
+ top_k_df = get_relevant_passages(query, df_clean, top_k=20)
89
+
90
+ # Debug: Check if we got any results
91
+ print(f"Retrieved {len(top_k_df)} assessments")
92
+
93
+ if top_k_df.empty:
94
+ return {"error": "No matching assessments found"}
95
+
96
+ # Convert test_type to list if it's not already
97
+ top_k_df['test_type'] = top_k_df['test_type'].apply(
98
+ lambda x: x if isinstance(x, list) else
99
+ (eval(x) if isinstance(x, str) and x.startswith('[') else [str(x)])
100
+ )
101
+
102
+ # Handle nan values for duration
103
+ top_k_df['duration'] = top_k_df['duration'].fillna(-1).astype(int)
104
+ top_k_df.loc[top_k_df['duration'] == -1, 'duration'] = None
105
+
106
+ # Convert DataFrame to list of dictionaries
107
+ candidates = top_k_df.to_dict(orient="records")
108
+
109
+ # Additional URL validation
110
+ candidates = validate_and_fix_urls(candidates)
111
+
112
+ # Print sample of data being sent to reranker
113
+ if candidates:
114
+ print(f"Sample candidate being sent to reranker: {candidates[0]}")
115
+
116
+ # Get recommendations
117
+ result = rerank(query, candidates)
118
+
119
+ # Post-process result
120
+ if 'recommended_assessments' in result:
121
+ result['recommended_assessments'] = validate_and_fix_urls(result['recommended_assessments'])
122
+ print(f"Returning {len(result['recommended_assessments'])} recommended assessments")
123
+
124
+ return result
125
+ except Exception as e:
126
+ import traceback
127
+ error_details = traceback.format_exc()
128
+ print(f"Error: {str(e)}\n{error_details}")
129
+ return {"error": f"Error processing request: {str(e)}"}
130
+
131
+ iface = gr.Interface(
132
+ fn=recommend,
133
+ inputs=gr.Textbox(label="Enter Job Description", lines=4),
134
+ outputs="json",
135
+ title="SHL Assessment Recommender",
136
+ description="Paste a job description to get the most relevant SHL assessments."
137
+ )
138
+
139
+ if __name__ == "__main__":
140
+ iface.launch()