Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from langchain_ollama import ChatOllama
|
3 |
-
from langchain_core.output_parsers import StrOutputParser
|
4 |
-
|
5 |
-
from langchain_core.prompts import (
|
6 |
-
SystemMessagePromptTemplate,
|
7 |
-
HumanMessagePromptTemplate,
|
8 |
-
AIMessagePromptTemplate,
|
9 |
-
ChatPromptTemplate
|
10 |
-
)
|
11 |
-
# Custom CSS styling
|
12 |
-
st.markdown("""
|
13 |
-
<style>
|
14 |
-
/* Existing styles */
|
15 |
-
.main {
|
16 |
-
background-color: #1a1a1a;
|
17 |
-
color: #ffffff;
|
18 |
-
}
|
19 |
-
.sidebar .sidebar-content {
|
20 |
-
background-color: #2d2d2d;
|
21 |
-
}
|
22 |
-
.stTextInput textarea {
|
23 |
-
color: #ffffff !important;
|
24 |
-
}
|
25 |
-
|
26 |
-
/* Add these new styles for select box */
|
27 |
-
.stSelectbox div[data-baseweb="select"] {
|
28 |
-
color: white !important;
|
29 |
-
background-color: #3d3d3d !important;
|
30 |
-
}
|
31 |
-
|
32 |
-
.stSelectbox svg {
|
33 |
-
fill: white !important;
|
34 |
-
}
|
35 |
-
|
36 |
-
.stSelectbox option {
|
37 |
-
background-color: #2d2d2d !important;
|
38 |
-
color: white !important;
|
39 |
-
}
|
40 |
-
|
41 |
-
/* For dropdown menu items */
|
42 |
-
div[role="listbox"] div {
|
43 |
-
background-color: #2d2d2d !important;
|
44 |
-
color: white !important;
|
45 |
-
}
|
46 |
-
</style>
|
47 |
-
""", unsafe_allow_html=True)
|
48 |
-
st.title("π§ DeepSeek Code Companion")
|
49 |
-
st.caption("π Your AI Pair Programmer with Debugging Superpowers")
|
50 |
-
|
51 |
-
# Sidebar configuration
|
52 |
-
with st.sidebar:
|
53 |
-
st.header("βοΈ Configuration")
|
54 |
-
selected_model = st.selectbox(
|
55 |
-
"Choose Model",
|
56 |
-
["deepseek-r1:1.5b", "deepseek-r1:3b"],
|
57 |
-
index=0
|
58 |
-
)
|
59 |
-
st.divider()
|
60 |
-
st.markdown("### Model Capabilities")
|
61 |
-
st.markdown("""
|
62 |
-
- π Python Expert
|
63 |
-
- π Debugging Assistant
|
64 |
-
- π Code Documentation
|
65 |
-
- π‘ Solution Design
|
66 |
-
""")
|
67 |
-
st.divider()
|
68 |
-
st.markdown("Built with [Ollama](https://ollama.ai/) | [LangChain](https://python.langchain.com/)")
|
69 |
-
|
70 |
-
|
71 |
-
# initiate the chat engine
|
72 |
-
|
73 |
-
llm_engine=ChatOllama(
|
74 |
-
model=selected_model,
|
75 |
-
base_url="http://localhost:11434",
|
76 |
-
|
77 |
-
temperature=0.3
|
78 |
-
|
79 |
-
)
|
80 |
-
|
81 |
-
# System prompt configuration
|
82 |
-
system_prompt = SystemMessagePromptTemplate.from_template(
|
83 |
-
"You are an expert AI coding assistant. Provide concise, correct solutions "
|
84 |
-
"with strategic print statements for debugging. Always respond in English."
|
85 |
-
)
|
86 |
-
|
87 |
-
# Session state management
|
88 |
-
if "message_log" not in st.session_state:
|
89 |
-
st.session_state.message_log = [{"role": "ai", "content": "Hi! I'm DeepSeek. How can I help you code today? π»"}]
|
90 |
-
|
91 |
-
# Chat container
|
92 |
-
chat_container = st.container()
|
93 |
-
|
94 |
-
# Display chat messages
|
95 |
-
with chat_container:
|
96 |
-
for message in st.session_state.message_log:
|
97 |
-
with st.chat_message(message["role"]):
|
98 |
-
st.markdown(message["content"])
|
99 |
-
|
100 |
-
# Chat input and processing
|
101 |
-
user_query = st.chat_input("Type your coding question here...")
|
102 |
-
|
103 |
-
def generate_ai_response(prompt_chain):
|
104 |
-
processing_pipeline=prompt_chain | llm_engine | StrOutputParser()
|
105 |
-
return processing_pipeline.invoke({})
|
106 |
-
|
107 |
-
def build_prompt_chain():
|
108 |
-
prompt_sequence = [system_prompt]
|
109 |
-
for msg in st.session_state.message_log:
|
110 |
-
if msg["role"] == "user":
|
111 |
-
prompt_sequence.append(HumanMessagePromptTemplate.from_template(msg["content"]))
|
112 |
-
elif msg["role"] == "ai":
|
113 |
-
prompt_sequence.append(AIMessagePromptTemplate.from_template(msg["content"]))
|
114 |
-
return ChatPromptTemplate.from_messages(prompt_sequence)
|
115 |
-
|
116 |
-
if user_query:
|
117 |
-
# Add user message to log
|
118 |
-
st.session_state.message_log.append({"role": "user", "content": user_query})
|
119 |
-
|
120 |
-
# Generate AI response
|
121 |
-
with st.spinner("π§ Processing..."):
|
122 |
-
prompt_chain = build_prompt_chain()
|
123 |
-
ai_response = generate_ai_response(prompt_chain)
|
124 |
-
|
125 |
-
# Add AI response to log
|
126 |
-
st.session_state.message_log.append({"role": "ai", "content": ai_response})
|
127 |
-
|
128 |
-
# Rerun to update chat display
|
129 |
-
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|