Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from itertools import chain | |
| from torch.nn.parallel import DataParallel | |
| from .scatter_gather import scatter_kwargs | |
| class MMDataParallel(DataParallel): | |
| """The DataParallel module that supports DataContainer. | |
| MMDataParallel has two main differences with PyTorch DataParallel: | |
| - It supports a custom type :class:`DataContainer` which allows more | |
| flexible control of input data during both GPU and CPU inference. | |
| - It implement two more APIs ``train_step()`` and ``val_step()``. | |
| Args: | |
| module (:class:`nn.Module`): Module to be encapsulated. | |
| device_ids (list[int]): Device IDS of modules to be scattered to. | |
| Defaults to None when GPU is not available. | |
| output_device (str | int): Device ID for output. Defaults to None. | |
| dim (int): Dimension used to scatter the data. Defaults to 0. | |
| """ | |
| def __init__(self, *args, dim=0, **kwargs): | |
| super(MMDataParallel, self).__init__(*args, dim=dim, **kwargs) | |
| self.dim = dim | |
| def forward(self, *inputs, **kwargs): | |
| """Override the original forward function. | |
| The main difference lies in the CPU inference where the data in | |
| :class:`DataContainers` will still be gathered. | |
| """ | |
| if not self.device_ids: | |
| # We add the following line thus the module could gather and | |
| # convert data containers as those in GPU inference | |
| inputs, kwargs = self.scatter(inputs, kwargs, [-1]) | |
| return self.module(*inputs[0], **kwargs[0]) | |
| else: | |
| return super().forward(*inputs, **kwargs) | |
| def scatter(self, inputs, kwargs, device_ids): | |
| return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim) | |
| def train_step(self, *inputs, **kwargs): | |
| if not self.device_ids: | |
| # We add the following line thus the module could gather and | |
| # convert data containers as those in GPU inference | |
| inputs, kwargs = self.scatter(inputs, kwargs, [-1]) | |
| return self.module.train_step(*inputs[0], **kwargs[0]) | |
| assert len(self.device_ids) == 1, \ | |
| ('MMDataParallel only supports single GPU training, if you need to' | |
| ' train with multiple GPUs, please use MMDistributedDataParallel' | |
| 'instead.') | |
| for t in chain(self.module.parameters(), self.module.buffers()): | |
| if t.device != self.src_device_obj: | |
| raise RuntimeError( | |
| 'module must have its parameters and buffers ' | |
| f'on device {self.src_device_obj} (device_ids[0]) but ' | |
| f'found one of them on device: {t.device}') | |
| inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) | |
| return self.module.train_step(*inputs[0], **kwargs[0]) | |
| def val_step(self, *inputs, **kwargs): | |
| if not self.device_ids: | |
| # We add the following line thus the module could gather and | |
| # convert data containers as those in GPU inference | |
| inputs, kwargs = self.scatter(inputs, kwargs, [-1]) | |
| return self.module.val_step(*inputs[0], **kwargs[0]) | |
| assert len(self.device_ids) == 1, \ | |
| ('MMDataParallel only supports single GPU training, if you need to' | |
| ' train with multiple GPUs, please use MMDistributedDataParallel' | |
| ' instead.') | |
| for t in chain(self.module.parameters(), self.module.buffers()): | |
| if t.device != self.src_device_obj: | |
| raise RuntimeError( | |
| 'module must have its parameters and buffers ' | |
| f'on device {self.src_device_obj} (device_ids[0]) but ' | |
| f'found one of them on device: {t.device}') | |
| inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) | |
| return self.module.val_step(*inputs[0], **kwargs[0]) | |