Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import logging | |
import torch.nn as nn | |
import torch.utils.checkpoint as cp | |
from .utils import constant_init, kaiming_init | |
def conv3x3(in_planes, out_planes, stride=1, dilation=1): | |
"""3x3 convolution with padding.""" | |
return nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False): | |
super(BasicBlock, self).__init__() | |
assert style in ['pytorch', 'caffe'] | |
self.conv1 = conv3x3(inplanes, planes, stride, dilation) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
self.dilation = dilation | |
assert not with_cp | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
dilation=1, | |
downsample=None, | |
style='pytorch', | |
with_cp=False): | |
"""Bottleneck block. | |
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if | |
it is "caffe", the stride-two layer is the first 1x1 conv layer. | |
""" | |
super(Bottleneck, self).__init__() | |
assert style in ['pytorch', 'caffe'] | |
if style == 'pytorch': | |
conv1_stride = 1 | |
conv2_stride = stride | |
else: | |
conv1_stride = stride | |
conv2_stride = 1 | |
self.conv1 = nn.Conv2d( | |
inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False) | |
self.conv2 = nn.Conv2d( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=conv2_stride, | |
padding=dilation, | |
dilation=dilation, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d( | |
planes, planes * self.expansion, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
self.dilation = dilation | |
self.with_cp = with_cp | |
def forward(self, x): | |
def _inner_forward(x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
return out | |
if self.with_cp and x.requires_grad: | |
out = cp.checkpoint(_inner_forward, x) | |
else: | |
out = _inner_forward(x) | |
out = self.relu(out) | |
return out | |
def make_res_layer(block, | |
inplanes, | |
planes, | |
blocks, | |
stride=1, | |
dilation=1, | |
style='pytorch', | |
with_cp=False): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
inplanes, | |
planes, | |
stride, | |
dilation, | |
downsample, | |
style=style, | |
with_cp=with_cp)) | |
inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append( | |
block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp)) | |
return nn.Sequential(*layers) | |
class ResNet(nn.Module): | |
"""ResNet backbone. | |
Args: | |
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. | |
num_stages (int): Resnet stages, normally 4. | |
strides (Sequence[int]): Strides of the first block of each stage. | |
dilations (Sequence[int]): Dilation of each stage. | |
out_indices (Sequence[int]): Output from which stages. | |
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two | |
layer is the 3x3 conv layer, otherwise the stride-two layer is | |
the first 1x1 conv layer. | |
frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
not freezing any parameters. | |
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze | |
running stats (mean and var). | |
bn_frozen (bool): Whether to freeze weight and bias of BN layers. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. | |
""" | |
arch_settings = { | |
18: (BasicBlock, (2, 2, 2, 2)), | |
34: (BasicBlock, (3, 4, 6, 3)), | |
50: (Bottleneck, (3, 4, 6, 3)), | |
101: (Bottleneck, (3, 4, 23, 3)), | |
152: (Bottleneck, (3, 8, 36, 3)) | |
} | |
def __init__(self, | |
depth, | |
num_stages=4, | |
strides=(1, 2, 2, 2), | |
dilations=(1, 1, 1, 1), | |
out_indices=(0, 1, 2, 3), | |
style='pytorch', | |
frozen_stages=-1, | |
bn_eval=True, | |
bn_frozen=False, | |
with_cp=False): | |
super(ResNet, self).__init__() | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for resnet') | |
assert num_stages >= 1 and num_stages <= 4 | |
block, stage_blocks = self.arch_settings[depth] | |
stage_blocks = stage_blocks[:num_stages] | |
assert len(strides) == len(dilations) == num_stages | |
assert max(out_indices) < num_stages | |
self.out_indices = out_indices | |
self.style = style | |
self.frozen_stages = frozen_stages | |
self.bn_eval = bn_eval | |
self.bn_frozen = bn_frozen | |
self.with_cp = with_cp | |
self.inplanes = 64 | |
self.conv1 = nn.Conv2d( | |
3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.res_layers = [] | |
for i, num_blocks in enumerate(stage_blocks): | |
stride = strides[i] | |
dilation = dilations[i] | |
planes = 64 * 2**i | |
res_layer = make_res_layer( | |
block, | |
self.inplanes, | |
planes, | |
num_blocks, | |
stride=stride, | |
dilation=dilation, | |
style=self.style, | |
with_cp=with_cp) | |
self.inplanes = planes * block.expansion | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, res_layer) | |
self.res_layers.append(layer_name) | |
self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1) | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = logging.getLogger() | |
from ..runner import load_checkpoint | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
outs = [] | |
for i, layer_name in enumerate(self.res_layers): | |
res_layer = getattr(self, layer_name) | |
x = res_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
else: | |
return tuple(outs) | |
def train(self, mode=True): | |
super(ResNet, self).train(mode) | |
if self.bn_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
if self.bn_frozen: | |
for params in m.parameters(): | |
params.requires_grad = False | |
if mode and self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for param in self.bn1.parameters(): | |
param.requires_grad = False | |
self.bn1.eval() | |
self.bn1.weight.requires_grad = False | |
self.bn1.bias.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
mod = getattr(self, f'layer{i}') | |
mod.eval() | |
for param in mod.parameters(): | |
param.requires_grad = False | |