Anonymous-sub's picture
merge (#1)
251e479
raw
history blame
7.78 kB
# MIT License
#
# Copyright (c) 2018 Tom Runia
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Tom Runia
# Date Created: 2018-08-03
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def make_colorwheel():
'''
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
'''
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col = col + RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col:col + YG, 1] = 255
col = col + YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col = col + GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
colorwheel[col:col + CB, 2] = 255
col = col + CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col = col + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
colorwheel[col:col + MR, 0] = 255
return colorwheel
def flow_compute_color(u, v, convert_to_bgr=False):
'''
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param u: np.ndarray, input horizontal flow
:param v: np.ndarray, input vertical flow
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
:return:
'''
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 1
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range?
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False):
'''
Expects a two dimensional flow image of shape [H,W,2]
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param flow_uv: np.ndarray of shape [H,W,2]
:param clip_flow: float, maximum clipping value for flow
:return:
'''
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_compute_color(u, v, convert_to_bgr)
UNKNOWN_FLOW_THRESH = 1e7
SMALLFLOW = 0.0
LARGEFLOW = 1e8
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG))
colorwheel[col:col + YG, 1] = 255
col += YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB))
colorwheel[col:col + CB, 2] = 255
col += CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col + MR, 0] = 255
return colorwheel
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u ** 2 + v ** 2)
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols + 1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel, 1)):
tmp = colorwheel[:, i]
col0 = tmp[k0 - 1] / 255
col1 = tmp[k1 - 1] / 255
col = (1 - f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1 - rad[idx] * (1 - col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx)))
return img
# from https://github.com/gengshan-y/VCN
def flow_to_image(flow):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
u = u / (maxrad + np.finfo(float).eps)
v = v / (maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
def save_vis_flow_tofile(flow, output_path):
vis_flow = flow_to_image(flow)
from PIL import Image
img = Image.fromarray(vis_flow)
img.save(output_path)
def flow_tensor_to_image(flow):
"""Used for tensorboard visualization"""
flow = flow.permute(1, 2, 0) # [H, W, 2]
flow = flow.detach().cpu().numpy()
flow = flow_to_image(flow) # [H, W, 3]
flow = np.transpose(flow, (2, 0, 1)) # [3, H, W]
return flow