Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import argparse | |
import numpy as np | |
import os | |
from data import build_train_dataset | |
from gmflow.gmflow import GMFlow | |
from loss import flow_loss_func | |
from evaluate import (validate_chairs, validate_things, validate_sintel, validate_kitti, | |
create_sintel_submission, create_kitti_submission, inference_on_dir) | |
from utils.logger import Logger | |
from utils import misc | |
from utils.dist_utils import get_dist_info, init_dist, setup_for_distributed | |
def get_args_parser(): | |
parser = argparse.ArgumentParser() | |
# dataset | |
parser.add_argument('--checkpoint_dir', default='tmp', type=str, | |
help='where to save the training log and models') | |
parser.add_argument('--stage', default='chairs', type=str, | |
help='training stage') | |
parser.add_argument('--image_size', default=[384, 512], type=int, nargs='+', | |
help='image size for training') | |
parser.add_argument('--padding_factor', default=16, type=int, | |
help='the input should be divisible by padding_factor, otherwise do padding') | |
parser.add_argument('--max_flow', default=400, type=int, | |
help='exclude very large motions during training') | |
parser.add_argument('--val_dataset', default=['chairs'], type=str, nargs='+', | |
help='validation dataset') | |
parser.add_argument('--with_speed_metric', action='store_true', | |
help='with speed metric when evaluation') | |
# training | |
parser.add_argument('--lr', default=4e-4, type=float) | |
parser.add_argument('--batch_size', default=12, type=int) | |
parser.add_argument('--num_workers', default=4, type=int) | |
parser.add_argument('--weight_decay', default=1e-4, type=float) | |
parser.add_argument('--grad_clip', default=1.0, type=float) | |
parser.add_argument('--num_steps', default=100000, type=int) | |
parser.add_argument('--seed', default=326, type=int) | |
parser.add_argument('--summary_freq', default=100, type=int) | |
parser.add_argument('--val_freq', default=10000, type=int) | |
parser.add_argument('--save_ckpt_freq', default=10000, type=int) | |
parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int) | |
# resume pretrained model or resume training | |
parser.add_argument('--resume', default=None, type=str, | |
help='resume from pretrain model for finetuing or resume from terminated training') | |
parser.add_argument('--strict_resume', action='store_true') | |
parser.add_argument('--no_resume_optimizer', action='store_true') | |
# GMFlow model | |
parser.add_argument('--num_scales', default=1, type=int, | |
help='basic gmflow model uses a single 1/8 feature, the refinement uses 1/4 feature') | |
parser.add_argument('--feature_channels', default=128, type=int) | |
parser.add_argument('--upsample_factor', default=8, type=int) | |
parser.add_argument('--num_transformer_layers', default=6, type=int) | |
parser.add_argument('--num_head', default=1, type=int) | |
parser.add_argument('--attention_type', default='swin', type=str) | |
parser.add_argument('--ffn_dim_expansion', default=4, type=int) | |
parser.add_argument('--attn_splits_list', default=[2], type=int, nargs='+', | |
help='number of splits in attention') | |
parser.add_argument('--corr_radius_list', default=[-1], type=int, nargs='+', | |
help='correlation radius for matching, -1 indicates global matching') | |
parser.add_argument('--prop_radius_list', default=[-1], type=int, nargs='+', | |
help='self-attention radius for flow propagation, -1 indicates global attention') | |
# loss | |
parser.add_argument('--gamma', default=0.9, type=float, | |
help='loss weight') | |
# evaluation | |
parser.add_argument('--eval', action='store_true') | |
parser.add_argument('--save_eval_to_file', action='store_true') | |
parser.add_argument('--evaluate_matched_unmatched', action='store_true') | |
# inference on a directory | |
parser.add_argument('--inference_dir', default=None, type=str) | |
parser.add_argument('--inference_size', default=None, type=int, nargs='+', | |
help='can specify the inference size') | |
parser.add_argument('--dir_paired_data', action='store_true', | |
help='Paired data in a dir instead of a sequence') | |
parser.add_argument('--save_flo_flow', action='store_true') | |
parser.add_argument('--pred_bidir_flow', action='store_true', | |
help='predict bidirectional flow') | |
parser.add_argument('--fwd_bwd_consistency_check', action='store_true', | |
help='forward backward consistency check with bidirection flow') | |
# predict on sintel and kitti test set for submission | |
parser.add_argument('--submission', action='store_true', | |
help='submission to sintel or kitti test sets') | |
parser.add_argument('--output_path', default='output', type=str, | |
help='where to save the prediction results') | |
parser.add_argument('--save_vis_flow', action='store_true', | |
help='visualize flow prediction as .png image') | |
parser.add_argument('--no_save_flo', action='store_true', | |
help='not save flow as .flo') | |
# distributed training | |
parser.add_argument('--local_rank', default=0, type=int) | |
parser.add_argument('--distributed', action='store_true') | |
parser.add_argument('--launcher', default='none', type=str, choices=['none', 'pytorch']) | |
parser.add_argument('--gpu_ids', default=0, type=int, nargs='+') | |
parser.add_argument('--count_time', action='store_true', | |
help='measure the inference time on sintel') | |
return parser | |
def main(args): | |
if not args.eval and not args.submission and args.inference_dir is None: | |
if args.local_rank == 0: | |
print('pytorch version:', torch.__version__) | |
print(args) | |
misc.save_args(args) | |
misc.check_path(args.checkpoint_dir) | |
misc.save_command(args.checkpoint_dir) | |
seed = args.seed | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
torch.backends.cudnn.benchmark = True | |
if args.launcher == 'none': | |
args.distributed = False | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
else: | |
args.distributed = True | |
# adjust batch size for each gpu | |
assert args.batch_size % torch.cuda.device_count() == 0 | |
args.batch_size = args.batch_size // torch.cuda.device_count() | |
dist_params = dict(backend='nccl') | |
init_dist(args.launcher, **dist_params) | |
# re-set gpu_ids with distributed training mode | |
_, world_size = get_dist_info() | |
args.gpu_ids = range(world_size) | |
device = torch.device('cuda:{}'.format(args.local_rank)) | |
setup_for_distributed(args.local_rank == 0) | |
# model | |
model = GMFlow(feature_channels=args.feature_channels, | |
num_scales=args.num_scales, | |
upsample_factor=args.upsample_factor, | |
num_head=args.num_head, | |
attention_type=args.attention_type, | |
ffn_dim_expansion=args.ffn_dim_expansion, | |
num_transformer_layers=args.num_transformer_layers, | |
).to(device) | |
if not args.eval and not args.submission and not args.inference_dir: | |
print('Model definition:') | |
print(model) | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model.to(device), | |
device_ids=[args.local_rank], | |
output_device=args.local_rank) | |
model_without_ddp = model.module | |
else: | |
if torch.cuda.device_count() > 1: | |
print('Use %d GPUs' % torch.cuda.device_count()) | |
model = torch.nn.DataParallel(model) | |
model_without_ddp = model.module | |
else: | |
model_without_ddp = model | |
num_params = sum(p.numel() for p in model.parameters()) | |
print('Number of params:', num_params) | |
if not args.eval and not args.submission and args.inference_dir is None: | |
save_name = '%d_parameters' % num_params | |
open(os.path.join(args.checkpoint_dir, save_name), 'a').close() | |
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr, | |
weight_decay=args.weight_decay) | |
start_epoch = 0 | |
start_step = 0 | |
# resume checkpoints | |
if args.resume: | |
print('Load checkpoint: %s' % args.resume) | |
loc = 'cuda:{}'.format(args.local_rank) | |
checkpoint = torch.load(args.resume, map_location=loc) | |
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint | |
model_without_ddp.load_state_dict(weights, strict=args.strict_resume) | |
if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \ | |
args.no_resume_optimizer: | |
print('Load optimizer') | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
start_epoch = checkpoint['epoch'] | |
start_step = checkpoint['step'] | |
print('start_epoch: %d, start_step: %d' % (start_epoch, start_step)) | |
# evaluate | |
if args.eval: | |
val_results = {} | |
if 'chairs' in args.val_dataset: | |
results_dict = validate_chairs(model_without_ddp, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
val_results.update(results_dict) | |
if 'things' in args.val_dataset: | |
results_dict = validate_things(model_without_ddp, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
val_results.update(results_dict) | |
if 'sintel' in args.val_dataset: | |
results_dict = validate_sintel(model_without_ddp, | |
count_time=args.count_time, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
evaluate_matched_unmatched=args.evaluate_matched_unmatched, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
val_results.update(results_dict) | |
if 'kitti' in args.val_dataset: | |
results_dict = validate_kitti(model_without_ddp, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
val_results.update(results_dict) | |
if args.save_eval_to_file: | |
misc.check_path(args.checkpoint_dir) | |
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') | |
with open(val_file, 'a') as f: | |
f.write('\neval results after training done\n\n') | |
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', | |
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', 'things_clean_s40+', | |
'things_final_epe', 'things_final_s0_10', 'things_final_s10_40', 'things_final_s40+', | |
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', 'sintel_clean_s40+', | |
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', 'sintel_final_s40+', | |
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', | |
] | |
eval_metrics = [] | |
for metric in metrics: | |
if metric in val_results.keys(): | |
eval_metrics.append(metric) | |
metrics_values = [val_results[metric] for metric in eval_metrics] | |
num_metrics = len(eval_metrics) | |
# save as markdown format | |
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) | |
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) | |
f.write('\n\n') | |
return | |
# Sintel and KITTI submission | |
if args.submission: | |
# NOTE: args.val_dataset is a list | |
if args.val_dataset[0] == 'sintel': | |
create_sintel_submission(model_without_ddp, | |
output_path=args.output_path, | |
padding_factor=args.padding_factor, | |
save_vis_flow=args.save_vis_flow, | |
no_save_flo=args.no_save_flo, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
elif args.val_dataset[0] == 'kitti': | |
create_kitti_submission(model_without_ddp, | |
output_path=args.output_path, | |
padding_factor=args.padding_factor, | |
save_vis_flow=args.save_vis_flow, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
else: | |
raise ValueError(f'Not supported dataset for submission') | |
return | |
# inferece on a dir | |
if args.inference_dir is not None: | |
inference_on_dir(model_without_ddp, | |
inference_dir=args.inference_dir, | |
output_path=args.output_path, | |
padding_factor=args.padding_factor, | |
inference_size=args.inference_size, | |
paired_data=args.dir_paired_data, | |
save_flo_flow=args.save_flo_flow, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
pred_bidir_flow=args.pred_bidir_flow, | |
fwd_bwd_consistency_check=args.fwd_bwd_consistency_check, | |
) | |
return | |
# training datset | |
train_dataset = build_train_dataset(args) | |
print('Number of training images:', len(train_dataset)) | |
# Multi-processing | |
if args.distributed: | |
train_sampler = torch.utils.data.distributed.DistributedSampler( | |
train_dataset, | |
num_replicas=torch.cuda.device_count(), | |
rank=args.local_rank) | |
else: | |
train_sampler = None | |
shuffle = False if args.distributed else True | |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, | |
shuffle=shuffle, num_workers=args.num_workers, | |
pin_memory=True, drop_last=True, | |
sampler=train_sampler) | |
last_epoch = start_step if args.resume and start_step > 0 else -1 | |
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR( | |
optimizer, args.lr, | |
args.num_steps + 10, | |
pct_start=0.05, | |
cycle_momentum=False, | |
anneal_strategy='cos', | |
last_epoch=last_epoch, | |
) | |
if args.local_rank == 0: | |
summary_writer = SummaryWriter(args.checkpoint_dir) | |
logger = Logger(lr_scheduler, summary_writer, args.summary_freq, | |
start_step=start_step) | |
total_steps = start_step | |
epoch = start_epoch | |
print('Start training') | |
while total_steps < args.num_steps: | |
model.train() | |
# mannual change random seed for shuffling every epoch | |
if args.distributed: | |
train_sampler.set_epoch(epoch) | |
for i, sample in enumerate(train_loader): | |
img1, img2, flow_gt, valid = [x.to(device) for x in sample] | |
results_dict = model(img1, img2, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
flow_preds = results_dict['flow_preds'] | |
loss, metrics = flow_loss_func(flow_preds, flow_gt, valid, | |
gamma=args.gamma, | |
max_flow=args.max_flow, | |
) | |
if isinstance(loss, float): | |
continue | |
if torch.isnan(loss): | |
continue | |
metrics.update({'total_loss': loss.item()}) | |
# more efficient zero_grad | |
for param in model_without_ddp.parameters(): | |
param.grad = None | |
loss.backward() | |
# Gradient clipping | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) | |
optimizer.step() | |
lr_scheduler.step() | |
if args.local_rank == 0: | |
logger.push(metrics) | |
logger.add_image_summary(img1, img2, flow_preds, flow_gt) | |
total_steps += 1 | |
if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps: | |
if args.local_rank == 0: | |
checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps) | |
torch.save({ | |
'model': model_without_ddp.state_dict() | |
}, checkpoint_path) | |
if total_steps % args.save_latest_ckpt_freq == 0: | |
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth') | |
if args.local_rank == 0: | |
torch.save({ | |
'model': model_without_ddp.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'step': total_steps, | |
'epoch': epoch, | |
}, checkpoint_path) | |
if total_steps % args.val_freq == 0: | |
print('Start validation') | |
val_results = {} | |
# support validation on multiple datasets | |
if 'chairs' in args.val_dataset: | |
results_dict = validate_chairs(model_without_ddp, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
if args.local_rank == 0: | |
val_results.update(results_dict) | |
if 'things' in args.val_dataset: | |
results_dict = validate_things(model_without_ddp, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
if args.local_rank == 0: | |
val_results.update(results_dict) | |
if 'sintel' in args.val_dataset: | |
results_dict = validate_sintel(model_without_ddp, | |
count_time=args.count_time, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
evaluate_matched_unmatched=args.evaluate_matched_unmatched, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
if args.local_rank == 0: | |
val_results.update(results_dict) | |
if 'kitti' in args.val_dataset: | |
results_dict = validate_kitti(model_without_ddp, | |
padding_factor=args.padding_factor, | |
with_speed_metric=args.with_speed_metric, | |
attn_splits_list=args.attn_splits_list, | |
corr_radius_list=args.corr_radius_list, | |
prop_radius_list=args.prop_radius_list, | |
) | |
if args.local_rank == 0: | |
val_results.update(results_dict) | |
if args.local_rank == 0: | |
logger.write_dict(val_results) | |
# Save validation results | |
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') | |
with open(val_file, 'a') as f: | |
f.write('step: %06d\n' % total_steps) | |
if args.evaluate_matched_unmatched: | |
metrics = ['chairs_epe', | |
'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', | |
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', | |
'things_clean_s40+', | |
'sintel_clean_epe', 'sintel_clean_matched', 'sintel_clean_unmatched', | |
'sintel_clean_s0_10', 'sintel_clean_s10_40', | |
'sintel_clean_s40+', | |
'sintel_final_epe', 'sintel_final_matched', 'sintel_final_unmatched', | |
'sintel_final_s0_10', 'sintel_final_s10_40', | |
'sintel_final_s40+', | |
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', | |
] | |
else: | |
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', | |
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', | |
'things_clean_s40+', | |
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', | |
'sintel_clean_s40+', | |
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', | |
'sintel_final_s40+', | |
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', | |
] | |
eval_metrics = [] | |
for metric in metrics: | |
if metric in val_results.keys(): | |
eval_metrics.append(metric) | |
metrics_values = [val_results[metric] for metric in eval_metrics] | |
num_metrics = len(eval_metrics) | |
# save as markdown format | |
if args.evaluate_matched_unmatched: | |
f.write(("| {:>25} " * num_metrics + '\n').format(*eval_metrics)) | |
f.write(("| {:25.3f} " * num_metrics).format(*metrics_values)) | |
else: | |
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) | |
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) | |
f.write('\n\n') | |
model.train() | |
if total_steps >= args.num_steps: | |
print('Training done') | |
return | |
epoch += 1 | |
if __name__ == '__main__': | |
parser = get_args_parser() | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
main(args) | |