Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
# https://github.com/facebookresearch/detectron2/blob/main/projects/TridentNet/tridentnet/trident_conv.py | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn.modules.utils import _pair | |
class MultiScaleTridentConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
strides=1, | |
paddings=0, | |
dilations=1, | |
dilation=1, | |
groups=1, | |
num_branch=1, | |
test_branch_idx=-1, | |
bias=False, | |
norm=None, | |
activation=None, | |
): | |
super(MultiScaleTridentConv, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.num_branch = num_branch | |
self.stride = _pair(stride) | |
self.groups = groups | |
self.with_bias = bias | |
self.dilation = dilation | |
if isinstance(paddings, int): | |
paddings = [paddings] * self.num_branch | |
if isinstance(dilations, int): | |
dilations = [dilations] * self.num_branch | |
if isinstance(strides, int): | |
strides = [strides] * self.num_branch | |
self.paddings = [_pair(padding) for padding in paddings] | |
self.dilations = [_pair(dilation) for dilation in dilations] | |
self.strides = [_pair(stride) for stride in strides] | |
self.test_branch_idx = test_branch_idx | |
self.norm = norm | |
self.activation = activation | |
assert len({self.num_branch, len(self.paddings), len(self.strides)}) == 1 | |
self.weight = nn.Parameter( | |
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) | |
) | |
if bias: | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.bias = None | |
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") | |
if self.bias is not None: | |
nn.init.constant_(self.bias, 0) | |
def forward(self, inputs): | |
num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1 | |
assert len(inputs) == num_branch | |
if self.training or self.test_branch_idx == -1: | |
outputs = [ | |
F.conv2d(input, self.weight, self.bias, stride, padding, self.dilation, self.groups) | |
for input, stride, padding in zip(inputs, self.strides, self.paddings) | |
] | |
else: | |
outputs = [ | |
F.conv2d( | |
inputs[0], | |
self.weight, | |
self.bias, | |
self.strides[self.test_branch_idx] if self.test_branch_idx == -1 else self.strides[-1], | |
self.paddings[self.test_branch_idx] if self.test_branch_idx == -1 else self.paddings[-1], | |
self.dilation, | |
self.groups, | |
) | |
] | |
if self.norm is not None: | |
outputs = [self.norm(x) for x in outputs] | |
if self.activation is not None: | |
outputs = [self.activation(x) for x in outputs] | |
return outputs | |