Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from ..utils import deprecated_api_warning, ext_loader | |
ext_module = ext_loader.load_ext('_ext', | |
['roi_align_forward', 'roi_align_backward']) | |
class RoIAlignFunction(Function): | |
def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio, | |
pool_mode, aligned): | |
from ..onnx import is_custom_op_loaded | |
has_custom_op = is_custom_op_loaded() | |
if has_custom_op: | |
return g.op( | |
'mmcv::MMCVRoiAlign', | |
input, | |
rois, | |
output_height_i=output_size[0], | |
output_width_i=output_size[1], | |
spatial_scale_f=spatial_scale, | |
sampling_ratio_i=sampling_ratio, | |
mode_s=pool_mode, | |
aligned_i=aligned) | |
else: | |
from torch.onnx.symbolic_opset9 import sub, squeeze | |
from torch.onnx.symbolic_helper import _slice_helper | |
from torch.onnx import TensorProtoDataType | |
# batch_indices = rois[:, 0].long() | |
batch_indices = _slice_helper( | |
g, rois, axes=[1], starts=[0], ends=[1]) | |
batch_indices = squeeze(g, batch_indices, 1) | |
batch_indices = g.op( | |
'Cast', batch_indices, to_i=TensorProtoDataType.INT64) | |
# rois = rois[:, 1:] | |
rois = _slice_helper(g, rois, axes=[1], starts=[1], ends=[5]) | |
if aligned: | |
# rois -= 0.5/spatial_scale | |
aligned_offset = g.op( | |
'Constant', | |
value_t=torch.tensor([0.5 / spatial_scale], | |
dtype=torch.float32)) | |
rois = sub(g, rois, aligned_offset) | |
# roi align | |
return g.op( | |
'RoiAlign', | |
input, | |
rois, | |
batch_indices, | |
output_height_i=output_size[0], | |
output_width_i=output_size[1], | |
spatial_scale_f=spatial_scale, | |
sampling_ratio_i=max(0, sampling_ratio), | |
mode_s=pool_mode) | |
def forward(ctx, | |
input, | |
rois, | |
output_size, | |
spatial_scale=1.0, | |
sampling_ratio=0, | |
pool_mode='avg', | |
aligned=True): | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = spatial_scale | |
ctx.sampling_ratio = sampling_ratio | |
assert pool_mode in ('max', 'avg') | |
ctx.pool_mode = 0 if pool_mode == 'max' else 1 | |
ctx.aligned = aligned | |
ctx.input_shape = input.size() | |
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' | |
output_shape = (rois.size(0), input.size(1), ctx.output_size[0], | |
ctx.output_size[1]) | |
output = input.new_zeros(output_shape) | |
if ctx.pool_mode == 0: | |
argmax_y = input.new_zeros(output_shape) | |
argmax_x = input.new_zeros(output_shape) | |
else: | |
argmax_y = input.new_zeros(0) | |
argmax_x = input.new_zeros(0) | |
ext_module.roi_align_forward( | |
input, | |
rois, | |
output, | |
argmax_y, | |
argmax_x, | |
aligned_height=ctx.output_size[0], | |
aligned_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
pool_mode=ctx.pool_mode, | |
aligned=ctx.aligned) | |
ctx.save_for_backward(rois, argmax_y, argmax_x) | |
return output | |
def backward(ctx, grad_output): | |
rois, argmax_y, argmax_x = ctx.saved_tensors | |
grad_input = grad_output.new_zeros(ctx.input_shape) | |
# complex head architecture may cause grad_output uncontiguous. | |
grad_output = grad_output.contiguous() | |
ext_module.roi_align_backward( | |
grad_output, | |
rois, | |
argmax_y, | |
argmax_x, | |
grad_input, | |
aligned_height=ctx.output_size[0], | |
aligned_width=ctx.output_size[1], | |
spatial_scale=ctx.spatial_scale, | |
sampling_ratio=ctx.sampling_ratio, | |
pool_mode=ctx.pool_mode, | |
aligned=ctx.aligned) | |
return grad_input, None, None, None, None, None, None | |
roi_align = RoIAlignFunction.apply | |
class RoIAlign(nn.Module): | |
"""RoI align pooling layer. | |
Args: | |
output_size (tuple): h, w | |
spatial_scale (float): scale the input boxes by this number | |
sampling_ratio (int): number of inputs samples to take for each | |
output sample. 0 to take samples densely for current models. | |
pool_mode (str, 'avg' or 'max'): pooling mode in each bin. | |
aligned (bool): if False, use the legacy implementation in | |
MMDetection. If True, align the results more perfectly. | |
use_torchvision (bool): whether to use roi_align from torchvision. | |
Note: | |
The implementation of RoIAlign when aligned=True is modified from | |
https://github.com/facebookresearch/detectron2/ | |
The meaning of aligned=True: | |
Given a continuous coordinate c, its two neighboring pixel | |
indices (in our pixel model) are computed by floor(c - 0.5) and | |
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete | |
indices [0] and [1] (which are sampled from the underlying signal | |
at continuous coordinates 0.5 and 1.5). But the original roi_align | |
(aligned=False) does not subtract the 0.5 when computing | |
neighboring pixel indices and therefore it uses pixels with a | |
slightly incorrect alignment (relative to our pixel model) when | |
performing bilinear interpolation. | |
With `aligned=True`, | |
we first appropriately scale the ROI and then shift it by -0.5 | |
prior to calling roi_align. This produces the correct neighbors; | |
The difference does not make a difference to the model's | |
performance if ROIAlign is used together with conv layers. | |
""" | |
def __init__(self, | |
output_size, | |
spatial_scale=1.0, | |
sampling_ratio=0, | |
pool_mode='avg', | |
aligned=True, | |
use_torchvision=False): | |
super(RoIAlign, self).__init__() | |
self.output_size = _pair(output_size) | |
self.spatial_scale = float(spatial_scale) | |
self.sampling_ratio = int(sampling_ratio) | |
self.pool_mode = pool_mode | |
self.aligned = aligned | |
self.use_torchvision = use_torchvision | |
def forward(self, input, rois): | |
""" | |
Args: | |
input: NCHW images | |
rois: Bx5 boxes. First column is the index into N.\ | |
The other 4 columns are xyxy. | |
""" | |
if self.use_torchvision: | |
from torchvision.ops import roi_align as tv_roi_align | |
if 'aligned' in tv_roi_align.__code__.co_varnames: | |
return tv_roi_align(input, rois, self.output_size, | |
self.spatial_scale, self.sampling_ratio, | |
self.aligned) | |
else: | |
if self.aligned: | |
rois -= rois.new_tensor([0.] + | |
[0.5 / self.spatial_scale] * 4) | |
return tv_roi_align(input, rois, self.output_size, | |
self.spatial_scale, self.sampling_ratio) | |
else: | |
return roi_align(input, rois, self.output_size, self.spatial_scale, | |
self.sampling_ratio, self.pool_mode, self.aligned) | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(output_size={self.output_size}, ' | |
s += f'spatial_scale={self.spatial_scale}, ' | |
s += f'sampling_ratio={self.sampling_ratio}, ' | |
s += f'pool_mode={self.pool_mode}, ' | |
s += f'aligned={self.aligned}, ' | |
s += f'use_torchvision={self.use_torchvision})' | |
return s | |