Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Function | |
from torch.nn.modules.module import Module | |
from ..cnn import UPSAMPLE_LAYERS, normal_init, xavier_init | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext('_ext', [ | |
'carafe_naive_forward', 'carafe_naive_backward', 'carafe_forward', | |
'carafe_backward' | |
]) | |
class CARAFENaiveFunction(Function): | |
def symbolic(g, features, masks, kernel_size, group_size, scale_factor): | |
return g.op( | |
'mmcv::MMCVCARAFENaive', | |
features, | |
masks, | |
kernel_size_i=kernel_size, | |
group_size_i=group_size, | |
scale_factor_f=scale_factor) | |
def forward(ctx, features, masks, kernel_size, group_size, scale_factor): | |
assert scale_factor >= 1 | |
assert masks.size(1) == kernel_size * kernel_size * group_size | |
assert masks.size(-1) == features.size(-1) * scale_factor | |
assert masks.size(-2) == features.size(-2) * scale_factor | |
assert features.size(1) % group_size == 0 | |
assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1 | |
ctx.kernel_size = kernel_size | |
ctx.group_size = group_size | |
ctx.scale_factor = scale_factor | |
ctx.feature_size = features.size() | |
ctx.mask_size = masks.size() | |
n, c, h, w = features.size() | |
output = features.new_zeros((n, c, h * scale_factor, w * scale_factor)) | |
ext_module.carafe_naive_forward( | |
features, | |
masks, | |
output, | |
kernel_size=kernel_size, | |
group_size=group_size, | |
scale_factor=scale_factor) | |
if features.requires_grad or masks.requires_grad: | |
ctx.save_for_backward(features, masks) | |
return output | |
def backward(ctx, grad_output): | |
assert grad_output.is_cuda | |
features, masks = ctx.saved_tensors | |
kernel_size = ctx.kernel_size | |
group_size = ctx.group_size | |
scale_factor = ctx.scale_factor | |
grad_input = torch.zeros_like(features) | |
grad_masks = torch.zeros_like(masks) | |
ext_module.carafe_naive_backward( | |
grad_output.contiguous(), | |
features, | |
masks, | |
grad_input, | |
grad_masks, | |
kernel_size=kernel_size, | |
group_size=group_size, | |
scale_factor=scale_factor) | |
return grad_input, grad_masks, None, None, None | |
carafe_naive = CARAFENaiveFunction.apply | |
class CARAFENaive(Module): | |
def __init__(self, kernel_size, group_size, scale_factor): | |
super(CARAFENaive, self).__init__() | |
assert isinstance(kernel_size, int) and isinstance( | |
group_size, int) and isinstance(scale_factor, int) | |
self.kernel_size = kernel_size | |
self.group_size = group_size | |
self.scale_factor = scale_factor | |
def forward(self, features, masks): | |
return carafe_naive(features, masks, self.kernel_size, self.group_size, | |
self.scale_factor) | |
class CARAFEFunction(Function): | |
def symbolic(g, features, masks, kernel_size, group_size, scale_factor): | |
return g.op( | |
'mmcv::MMCVCARAFE', | |
features, | |
masks, | |
kernel_size_i=kernel_size, | |
group_size_i=group_size, | |
scale_factor_f=scale_factor) | |
def forward(ctx, features, masks, kernel_size, group_size, scale_factor): | |
assert scale_factor >= 1 | |
assert masks.size(1) == kernel_size * kernel_size * group_size | |
assert masks.size(-1) == features.size(-1) * scale_factor | |
assert masks.size(-2) == features.size(-2) * scale_factor | |
assert features.size(1) % group_size == 0 | |
assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1 | |
ctx.kernel_size = kernel_size | |
ctx.group_size = group_size | |
ctx.scale_factor = scale_factor | |
ctx.feature_size = features.size() | |
ctx.mask_size = masks.size() | |
n, c, h, w = features.size() | |
output = features.new_zeros((n, c, h * scale_factor, w * scale_factor)) | |
routput = features.new_zeros(output.size(), requires_grad=False) | |
rfeatures = features.new_zeros(features.size(), requires_grad=False) | |
rmasks = masks.new_zeros(masks.size(), requires_grad=False) | |
ext_module.carafe_forward( | |
features, | |
masks, | |
rfeatures, | |
routput, | |
rmasks, | |
output, | |
kernel_size=kernel_size, | |
group_size=group_size, | |
scale_factor=scale_factor) | |
if features.requires_grad or masks.requires_grad: | |
ctx.save_for_backward(features, masks, rfeatures) | |
return output | |
def backward(ctx, grad_output): | |
assert grad_output.is_cuda | |
features, masks, rfeatures = ctx.saved_tensors | |
kernel_size = ctx.kernel_size | |
group_size = ctx.group_size | |
scale_factor = ctx.scale_factor | |
rgrad_output = torch.zeros_like(grad_output, requires_grad=False) | |
rgrad_input_hs = torch.zeros_like(grad_output, requires_grad=False) | |
rgrad_input = torch.zeros_like(features, requires_grad=False) | |
rgrad_masks = torch.zeros_like(masks, requires_grad=False) | |
grad_input = torch.zeros_like(features, requires_grad=False) | |
grad_masks = torch.zeros_like(masks, requires_grad=False) | |
ext_module.carafe_backward( | |
grad_output.contiguous(), | |
rfeatures, | |
masks, | |
rgrad_output, | |
rgrad_input_hs, | |
rgrad_input, | |
rgrad_masks, | |
grad_input, | |
grad_masks, | |
kernel_size=kernel_size, | |
group_size=group_size, | |
scale_factor=scale_factor) | |
return grad_input, grad_masks, None, None, None | |
carafe = CARAFEFunction.apply | |
class CARAFE(Module): | |
""" CARAFE: Content-Aware ReAssembly of FEatures | |
Please refer to https://arxiv.org/abs/1905.02188 for more details. | |
Args: | |
kernel_size (int): reassemble kernel size | |
group_size (int): reassemble group size | |
scale_factor (int): upsample ratio | |
Returns: | |
upsampled feature map | |
""" | |
def __init__(self, kernel_size, group_size, scale_factor): | |
super(CARAFE, self).__init__() | |
assert isinstance(kernel_size, int) and isinstance( | |
group_size, int) and isinstance(scale_factor, int) | |
self.kernel_size = kernel_size | |
self.group_size = group_size | |
self.scale_factor = scale_factor | |
def forward(self, features, masks): | |
return carafe(features, masks, self.kernel_size, self.group_size, | |
self.scale_factor) | |
class CARAFEPack(nn.Module): | |
"""A unified package of CARAFE upsampler that contains: 1) channel | |
compressor 2) content encoder 3) CARAFE op. | |
Official implementation of ICCV 2019 paper | |
CARAFE: Content-Aware ReAssembly of FEatures | |
Please refer to https://arxiv.org/abs/1905.02188 for more details. | |
Args: | |
channels (int): input feature channels | |
scale_factor (int): upsample ratio | |
up_kernel (int): kernel size of CARAFE op | |
up_group (int): group size of CARAFE op | |
encoder_kernel (int): kernel size of content encoder | |
encoder_dilation (int): dilation of content encoder | |
compressed_channels (int): output channels of channels compressor | |
Returns: | |
upsampled feature map | |
""" | |
def __init__(self, | |
channels, | |
scale_factor, | |
up_kernel=5, | |
up_group=1, | |
encoder_kernel=3, | |
encoder_dilation=1, | |
compressed_channels=64): | |
super(CARAFEPack, self).__init__() | |
self.channels = channels | |
self.scale_factor = scale_factor | |
self.up_kernel = up_kernel | |
self.up_group = up_group | |
self.encoder_kernel = encoder_kernel | |
self.encoder_dilation = encoder_dilation | |
self.compressed_channels = compressed_channels | |
self.channel_compressor = nn.Conv2d(channels, self.compressed_channels, | |
1) | |
self.content_encoder = nn.Conv2d( | |
self.compressed_channels, | |
self.up_kernel * self.up_kernel * self.up_group * | |
self.scale_factor * self.scale_factor, | |
self.encoder_kernel, | |
padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), | |
dilation=self.encoder_dilation, | |
groups=1) | |
self.init_weights() | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
xavier_init(m, distribution='uniform') | |
normal_init(self.content_encoder, std=0.001) | |
def kernel_normalizer(self, mask): | |
mask = F.pixel_shuffle(mask, self.scale_factor) | |
n, mask_c, h, w = mask.size() | |
# use float division explicitly, | |
# to void inconsistency while exporting to onnx | |
mask_channel = int(mask_c / float(self.up_kernel**2)) | |
mask = mask.view(n, mask_channel, -1, h, w) | |
mask = F.softmax(mask, dim=2, dtype=mask.dtype) | |
mask = mask.view(n, mask_c, h, w).contiguous() | |
return mask | |
def feature_reassemble(self, x, mask): | |
x = carafe(x, mask, self.up_kernel, self.up_group, self.scale_factor) | |
return x | |
def forward(self, x): | |
compressed_x = self.channel_compressor(x) | |
mask = self.content_encoder(compressed_x) | |
mask = self.kernel_normalizer(mask) | |
x = self.feature_reassemble(x, mask) | |
return x | |