Spaces:
Running
on
A10G
Running
on
A10G
import einops | |
import torch | |
import torch.nn.functional as F | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def find_flat_region(mask): | |
device = mask.device | |
kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], | |
[-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device) | |
kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], | |
[1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device) | |
mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode='replicate') | |
grad_x = torch.nn.functional.conv2d(mask_, kernel_x) | |
grad_y = torch.nn.functional.conv2d(mask_, kernel_y) | |
return ((abs(grad_x) + abs(grad_y)) == 0).float()[0] | |
def numpy2tensor(img): | |
x0 = torch.from_numpy(img.copy()).float().to(device) / 255.0 * 2.0 - 1. | |
x0 = torch.stack([x0], dim=0) | |
return einops.rearrange(x0, 'b h w c -> b c h w').clone() | |