Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .utils import split_feature, merge_splits | |
def single_head_full_attention(q, k, v): | |
# q, k, v: [B, L, C] | |
assert q.dim() == k.dim() == v.dim() == 3 | |
scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5) # [B, L, L] | |
attn = torch.softmax(scores, dim=2) # [B, L, L] | |
out = torch.matmul(attn, v) # [B, L, C] | |
return out | |
def generate_shift_window_attn_mask(input_resolution, window_size_h, window_size_w, | |
shift_size_h, shift_size_w, device=torch.device('cuda')): | |
# Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py | |
# calculate attention mask for SW-MSA | |
h, w = input_resolution | |
img_mask = torch.zeros((1, h, w, 1)).to(device) # 1 H W 1 | |
h_slices = (slice(0, -window_size_h), | |
slice(-window_size_h, -shift_size_h), | |
slice(-shift_size_h, None)) | |
w_slices = (slice(0, -window_size_w), | |
slice(-window_size_w, -shift_size_w), | |
slice(-shift_size_w, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = split_feature(img_mask, num_splits=input_resolution[-1] // window_size_w, channel_last=True) | |
mask_windows = mask_windows.view(-1, window_size_h * window_size_w) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
return attn_mask | |
def single_head_split_window_attention(q, k, v, | |
num_splits=1, | |
with_shift=False, | |
h=None, | |
w=None, | |
attn_mask=None, | |
): | |
# Ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py | |
# q, k, v: [B, L, C] | |
assert q.dim() == k.dim() == v.dim() == 3 | |
assert h is not None and w is not None | |
assert q.size(1) == h * w | |
b, _, c = q.size() | |
b_new = b * num_splits * num_splits | |
window_size_h = h // num_splits | |
window_size_w = w // num_splits | |
q = q.view(b, h, w, c) # [B, H, W, C] | |
k = k.view(b, h, w, c) | |
v = v.view(b, h, w, c) | |
scale_factor = c ** 0.5 | |
if with_shift: | |
assert attn_mask is not None # compute once | |
shift_size_h = window_size_h // 2 | |
shift_size_w = window_size_w // 2 | |
q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) | |
k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) | |
v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2)) | |
q = split_feature(q, num_splits=num_splits, channel_last=True) # [B*K*K, H/K, W/K, C] | |
k = split_feature(k, num_splits=num_splits, channel_last=True) | |
v = split_feature(v, num_splits=num_splits, channel_last=True) | |
scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1) | |
) / scale_factor # [B*K*K, H/K*W/K, H/K*W/K] | |
if with_shift: | |
scores += attn_mask.repeat(b, 1, 1) | |
attn = torch.softmax(scores, dim=-1) | |
out = torch.matmul(attn, v.view(b_new, -1, c)) # [B*K*K, H/K*W/K, C] | |
out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c), | |
num_splits=num_splits, channel_last=True) # [B, H, W, C] | |
# shift back | |
if with_shift: | |
out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2)) | |
out = out.view(b, -1, c) | |
return out | |
class TransformerLayer(nn.Module): | |
def __init__(self, | |
d_model=256, | |
nhead=1, | |
attention_type='swin', | |
no_ffn=False, | |
ffn_dim_expansion=4, | |
with_shift=False, | |
**kwargs, | |
): | |
super(TransformerLayer, self).__init__() | |
self.dim = d_model | |
self.nhead = nhead | |
self.attention_type = attention_type | |
self.no_ffn = no_ffn | |
self.with_shift = with_shift | |
# multi-head attention | |
self.q_proj = nn.Linear(d_model, d_model, bias=False) | |
self.k_proj = nn.Linear(d_model, d_model, bias=False) | |
self.v_proj = nn.Linear(d_model, d_model, bias=False) | |
self.merge = nn.Linear(d_model, d_model, bias=False) | |
self.norm1 = nn.LayerNorm(d_model) | |
# no ffn after self-attn, with ffn after cross-attn | |
if not self.no_ffn: | |
in_channels = d_model * 2 | |
self.mlp = nn.Sequential( | |
nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False), | |
nn.GELU(), | |
nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False), | |
) | |
self.norm2 = nn.LayerNorm(d_model) | |
def forward(self, source, target, | |
height=None, | |
width=None, | |
shifted_window_attn_mask=None, | |
attn_num_splits=None, | |
**kwargs, | |
): | |
# source, target: [B, L, C] | |
query, key, value = source, target, target | |
# single-head attention | |
query = self.q_proj(query) # [B, L, C] | |
key = self.k_proj(key) # [B, L, C] | |
value = self.v_proj(value) # [B, L, C] | |
if self.attention_type == 'swin' and attn_num_splits > 1: | |
if self.nhead > 1: | |
# we observe that multihead attention slows down the speed and increases the memory consumption | |
# without bringing obvious performance gains and thus the implementation is removed | |
raise NotImplementedError | |
else: | |
message = single_head_split_window_attention(query, key, value, | |
num_splits=attn_num_splits, | |
with_shift=self.with_shift, | |
h=height, | |
w=width, | |
attn_mask=shifted_window_attn_mask, | |
) | |
else: | |
message = single_head_full_attention(query, key, value) # [B, L, C] | |
message = self.merge(message) # [B, L, C] | |
message = self.norm1(message) | |
if not self.no_ffn: | |
message = self.mlp(torch.cat([source, message], dim=-1)) | |
message = self.norm2(message) | |
return source + message | |
class TransformerBlock(nn.Module): | |
"""self attention + cross attention + FFN""" | |
def __init__(self, | |
d_model=256, | |
nhead=1, | |
attention_type='swin', | |
ffn_dim_expansion=4, | |
with_shift=False, | |
**kwargs, | |
): | |
super(TransformerBlock, self).__init__() | |
self.self_attn = TransformerLayer(d_model=d_model, | |
nhead=nhead, | |
attention_type=attention_type, | |
no_ffn=True, | |
ffn_dim_expansion=ffn_dim_expansion, | |
with_shift=with_shift, | |
) | |
self.cross_attn_ffn = TransformerLayer(d_model=d_model, | |
nhead=nhead, | |
attention_type=attention_type, | |
ffn_dim_expansion=ffn_dim_expansion, | |
with_shift=with_shift, | |
) | |
def forward(self, source, target, | |
height=None, | |
width=None, | |
shifted_window_attn_mask=None, | |
attn_num_splits=None, | |
**kwargs, | |
): | |
# source, target: [B, L, C] | |
# self attention | |
source = self.self_attn(source, source, | |
height=height, | |
width=width, | |
shifted_window_attn_mask=shifted_window_attn_mask, | |
attn_num_splits=attn_num_splits, | |
) | |
# cross attention and ffn | |
source = self.cross_attn_ffn(source, target, | |
height=height, | |
width=width, | |
shifted_window_attn_mask=shifted_window_attn_mask, | |
attn_num_splits=attn_num_splits, | |
) | |
return source | |
class FeatureTransformer(nn.Module): | |
def __init__(self, | |
num_layers=6, | |
d_model=128, | |
nhead=1, | |
attention_type='swin', | |
ffn_dim_expansion=4, | |
**kwargs, | |
): | |
super(FeatureTransformer, self).__init__() | |
self.attention_type = attention_type | |
self.d_model = d_model | |
self.nhead = nhead | |
self.layers = nn.ModuleList([ | |
TransformerBlock(d_model=d_model, | |
nhead=nhead, | |
attention_type=attention_type, | |
ffn_dim_expansion=ffn_dim_expansion, | |
with_shift=True if attention_type == 'swin' and i % 2 == 1 else False, | |
) | |
for i in range(num_layers)]) | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, feature0, feature1, | |
attn_num_splits=None, | |
**kwargs, | |
): | |
b, c, h, w = feature0.shape | |
assert self.d_model == c | |
feature0 = feature0.flatten(-2).permute(0, 2, 1) # [B, H*W, C] | |
feature1 = feature1.flatten(-2).permute(0, 2, 1) # [B, H*W, C] | |
if self.attention_type == 'swin' and attn_num_splits > 1: | |
# global and refine use different number of splits | |
window_size_h = h // attn_num_splits | |
window_size_w = w // attn_num_splits | |
# compute attn mask once | |
shifted_window_attn_mask = generate_shift_window_attn_mask( | |
input_resolution=(h, w), | |
window_size_h=window_size_h, | |
window_size_w=window_size_w, | |
shift_size_h=window_size_h // 2, | |
shift_size_w=window_size_w // 2, | |
device=feature0.device, | |
) # [K*K, H/K*W/K, H/K*W/K] | |
else: | |
shifted_window_attn_mask = None | |
# concat feature0 and feature1 in batch dimension to compute in parallel | |
concat0 = torch.cat((feature0, feature1), dim=0) # [2B, H*W, C] | |
concat1 = torch.cat((feature1, feature0), dim=0) # [2B, H*W, C] | |
for layer in self.layers: | |
concat0 = layer(concat0, concat1, | |
height=h, | |
width=w, | |
shifted_window_attn_mask=shifted_window_attn_mask, | |
attn_num_splits=attn_num_splits, | |
) | |
# update feature1 | |
concat1 = torch.cat(concat0.chunk(chunks=2, dim=0)[::-1], dim=0) | |
feature0, feature1 = concat0.chunk(chunks=2, dim=0) # [B, H*W, C] | |
# reshape back | |
feature0 = feature0.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] | |
feature1 = feature1.view(b, h, w, c).permute(0, 3, 1, 2).contiguous() # [B, C, H, W] | |
return feature0, feature1 | |
class FeatureFlowAttention(nn.Module): | |
""" | |
flow propagation with self-attention on feature | |
query: feature0, key: feature0, value: flow | |
""" | |
def __init__(self, in_channels, | |
**kwargs, | |
): | |
super(FeatureFlowAttention, self).__init__() | |
self.q_proj = nn.Linear(in_channels, in_channels) | |
self.k_proj = nn.Linear(in_channels, in_channels) | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, feature0, flow, | |
local_window_attn=False, | |
local_window_radius=1, | |
**kwargs, | |
): | |
# q, k: feature [B, C, H, W], v: flow [B, 2, H, W] | |
if local_window_attn: | |
return self.forward_local_window_attn(feature0, flow, | |
local_window_radius=local_window_radius) | |
b, c, h, w = feature0.size() | |
query = feature0.view(b, c, h * w).permute(0, 2, 1) # [B, H*W, C] | |
# a note: the ``correct'' implementation should be: | |
# ``query = self.q_proj(query), key = self.k_proj(query)'' | |
# this problem is observed while cleaning up the code | |
# however, this doesn't affect the performance since the projection is a linear operation, | |
# thus the two projection matrices for key can be merged | |
# so I just leave it as is in order to not re-train all models :) | |
query = self.q_proj(query) # [B, H*W, C] | |
key = self.k_proj(query) # [B, H*W, C] | |
value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1) # [B, H*W, 2] | |
scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5) # [B, H*W, H*W] | |
prob = torch.softmax(scores, dim=-1) | |
out = torch.matmul(prob, value) # [B, H*W, 2] | |
out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2) # [B, 2, H, W] | |
return out | |
def forward_local_window_attn(self, feature0, flow, | |
local_window_radius=1, | |
): | |
assert flow.size(1) == 2 | |
assert local_window_radius > 0 | |
b, c, h, w = feature0.size() | |
feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1) | |
).reshape(b * h * w, 1, c) # [B*H*W, 1, C] | |
kernel_size = 2 * local_window_radius + 1 | |
feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w) | |
feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size, | |
padding=local_window_radius) # [B, C*(2R+1)^2), H*W] | |
feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute( | |
0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2) # [B*H*W, C, (2R+1)^2] | |
flow_window = F.unfold(flow, kernel_size=kernel_size, | |
padding=local_window_radius) # [B, 2*(2R+1)^2), H*W] | |
flow_window = flow_window.view(b, 2, kernel_size ** 2, h, w).permute( | |
0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, 2) # [B*H*W, (2R+1)^2, 2] | |
scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5) # [B*H*W, 1, (2R+1)^2] | |
prob = torch.softmax(scores, dim=-1) | |
out = torch.matmul(prob, flow_window).view(b, h, w, 2).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W] | |
return out | |