Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| import torch.nn as nn | |
| from torch.nn import functional as nnf | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| import cv2 | |
| from PIL import Image | |
| from typing import Tuple, Optional, Union | |
| import clip | |
| gpt_model_name = 'sberbank-ai/rugpt3medium_based_on_gpt2' | |
| class MLP(nn.Module): | |
| def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): | |
| super(MLP, self).__init__() | |
| layers = [] | |
| for i in range(len(sizes) - 1): | |
| layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) | |
| if i < len(sizes) - 2: | |
| layers.append(act()) | |
| self.model = nn.Sequential(*layers) | |
| # @autocast() | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.model(x) | |
| def freeze( | |
| model, | |
| freeze_emb=False, | |
| freeze_ln=False, | |
| freeze_attn=True, | |
| freeze_ff=True, | |
| freeze_other=False, | |
| ): | |
| for name, p in model.named_parameters(): | |
| # freeze all parameters except the layernorm and positional embeddings | |
| name = name.lower() | |
| if 'ln' in name or 'norm' in name: | |
| p.requires_grad = not freeze_ln | |
| elif 'embeddings' in name: | |
| p.requires_grad = not freeze_emb | |
| elif 'mlp' in name: | |
| p.requires_grad = not freeze_ff | |
| elif 'attn' in name: | |
| p.requires_grad = not freeze_attn | |
| else: | |
| p.requires_grad = not freeze_other | |
| return model | |
| class ClipCaptionModel(nn.Module): | |
| def __init__(self, prefix_length: int, prefix_size: int = 768): | |
| super(ClipCaptionModel, self).__init__() | |
| self.prefix_length = prefix_length | |
| """ | |
| ru gpts shit | |
| """ | |
| self.gpt = GPT2LMHeadModel.from_pretrained(gpt_model_name) | |
| self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] | |
| self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, | |
| self.gpt_embedding_size * prefix_length)) | |
| def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: | |
| return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) | |
| # @autocast() | |
| def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None): | |
| embedding_text = self.gpt.transformer.wte(tokens) | |
| prefix_projections = self.clip_project(prefix.float()).view(-1, self.prefix_length, self.gpt_embedding_size) | |
| embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) | |
| if labels is not None: | |
| dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) | |
| labels = torch.cat((dummy_token, tokens), dim=1) | |
| out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) | |
| return out | |
| class ClipCaptionPrefix(ClipCaptionModel): | |
| def parameters(self, recurse: bool = True): | |
| return self.clip_project.parameters() | |
| def train(self, mode: bool = True): | |
| super(ClipCaptionPrefix, self).train(mode) | |
| self.gpt.eval() | |
| return self | |
| def filter_ngrams(output_text): | |
| a_pos = output_text.find(' Ответ:') | |
| sec_a_pos = output_text.find(' Ответ:', a_pos + 1) | |
| return output_text[:sec_a_pos] | |
| def generate2( | |
| model, | |
| tokenizer, | |
| tokens=None, | |
| prompt='', | |
| embed=None, | |
| entry_count=1, | |
| entry_length=67, # maximum number of words | |
| top_p=0.98, | |
| temperature=1., | |
| stop_token='.', | |
| ): | |
| model.eval() | |
| generated_num = 0 | |
| generated_list = [] | |
| stop_token_index = tokenizer.encode(stop_token)[0] | |
| filter_value = -float("Inf") | |
| device = next(model.parameters()).device | |
| with torch.no_grad(): | |
| for entry_idx in range(entry_count): | |
| if not tokens: | |
| tokens = torch.tensor(tokenizer.encode(prompt)) | |
| # print('tokens',tokens) | |
| tokens = tokens.unsqueeze(0).to(device) | |
| emb_tokens = model.gpt.transformer.wte(tokens) | |
| if embed is not None: | |
| generated = torch.cat((embed, emb_tokens), dim=1) | |
| else: | |
| generated = emb_tokens | |
| for i in range(entry_length): | |
| outputs = model.gpt(inputs_embeds=generated) | |
| logits = outputs.logits | |
| logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
| logits[:, indices_to_remove] = filter_value | |
| top_k = 2000 | |
| top_p = 0.98 | |
| next_token = torch.argmax(logits, -1).unsqueeze(0) | |
| next_token_embed = model.gpt.transformer.wte(next_token) | |
| if tokens is None: | |
| tokens = next_token | |
| else: | |
| tokens = torch.cat((tokens, next_token), dim=1) | |
| generated = torch.cat((generated, next_token_embed), dim=1) | |
| if stop_token_index == next_token.item(): | |
| break | |
| decoder_inputs_embeds = next_token_embed | |
| output_list = list(tokens.squeeze().cpu().numpy()) | |
| output_text = tokenizer.decode(output_list) | |
| output_text = filter_ngrams(output_text) | |
| generated_list.append(output_text) | |
| return generated_list[0] | |
| def read_image(path): | |
| image = cv2.imread(path) | |
| size = 196, 196 | |
| image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
| image.thumbnail(size, Image.Resampling.LANCZOS) | |
| return image | |
| def create_emb(image): | |
| text = "Вопрос: что происходит на изображении? Ответ: " | |
| image = preprocess(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) | |
| prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
| return (prefix, text) | |
| def get_caption(prefix, prompt=''): | |
| prefix = prefix.to(device) | |
| with torch.no_grad(): | |
| prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
| if prompt: | |
| generated_text_prefix = generate2(model, tokenizer, prompt=prompt, embed=prefix_embed) | |
| else: | |
| generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) | |
| return generated_text_prefix.replace('\n', ' ') | |
| def get_ans(clip_emb, prompt): | |
| output = get_caption(clip_emb, prompt=prompt) | |
| ans = output[len(prompt):].strip() | |
| return ans | |
| device = 'cpu' | |
| clip_model, preprocess = clip.load("ViT-L/14@336px", device=device, jit=False) | |
| tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3medium_based_on_gpt2') | |
| prefix_length = 30 | |
| model_path = 'prefix_small_latest_gpt2_medium.pt' | |
| model = ClipCaptionPrefix(prefix_length) | |
| model.load_state_dict(torch.load(model_path, map_location='cpu')) | |
| model.to(device) | |
| model.eval() | |
| def classify_image(inp): | |
| print(type(inp)) | |
| inp = Image.fromarray(inp) | |
| prefix, text = create_emb(inp) | |
| ans = get_ans(prefix, text) | |
| return ans | |
| image = gr.inputs.Image(shape=(196, 196)) | |
| label = gr.outputs.Label(num_top_classes=3) | |
| iface = gr.Interface(fn=classify_image, description="RuImage Captioning trained for a image2text task to predict caption of image", inputs=image, outputs="text", examples=[ | |
| ["1.png"], | |
| ["2.png"], | |
| ["3.png"] | |
| ]) | |
| iface.launch() | |